Câu hỏi khởi động: Hình 38 mô tả một mặt cầu trong không gian.
Trong không gian với hệ tọa độ Oxyz, phương trình của mặt cầu được lập như thế nào?
Lời giải:
Trong không gian với hệ tọa độ Oxyz, phương trình của mặt cầu tâm I(a; b; c) bán kính R là:
(x – a)2 + (y – b)2 + (z – c)2 = R2.
I. Định nghĩa mặt cầu
Hoạt động 1: Nếu quay đường tròn tâm I bán kính R quanh đường kính AB một vòng (Hình 39) thì hình tạo thành được gọi là mặt cầu. Những điểm thuộc mặt cầu đó cách I một khoảng bằng bao nhiêu?
Lời giải:
- Khi quay đường tròn tâm I bán kính R quanh đường kính AB một vòng thì điểm thuộc mặt cầu đó cách I một khoảng bằng R.
Luyện tập 1: Trong không gian với hệ tọa độ Oxyz, cho điểm I(1; 2; 3) và mặt cầu tâm I đi qua điểm A(0; 4; 5). Tính đường kính của mặt cầu đó.
Lời giải:
Bán kính R của mặt cầu bằng độ dài MA. Ta có:
Độ dài MA:
II. Phương trình mặt cầu
Hoạt động 2: Cho hai điểm M(x; y; z) và I(a; b; c).
a) Viết công thức tính khoảng cách giữa hai điểm M và I.
b) Nêu mối liên hệ giữa x, y, và z để điểm M nằm trên mặt cầu tâm I bán kính R.
Lời giải:
a) IM = .
b) Điểm M nằm trên mặt cầu tâm I bán kính R khi IM = R, tức là = R
Luyện tập 2: Tìm tâm và bán kính của mặt cầu có phương trình: x2 + (y + 5)2 + (z + 1)2 = 2
Lời giải:
Tâm I của mặt cầu: I(0;-5;1)
Bán kính mặt cầu:
Luyện tập 3: Viết phương trình của mặt cầu, biết:
a) Tâm O bán kính R với O là gốc tọa độ;
b) Đường kính AB với A(1; 2; 1), B(3; 4; 7).
Lời giải:
Luyện tập 4: Chứng minh rằng phương trình
x2 + y2 + z2 – 6x – 2y – 4z – 11 = 0 là phương trình của một mặt cầu. Tìm tâm I và bán kính R của mặt cầu đó.
Lời giải:
Cách 1:
Ta có x2 + y2 + z2 – 6x – 2y – 4z – 11 = 0
⇔ x2 – 2 ∙ 3 ∙ x + 9 + y2 – 2 ∙ 1 ∙ y + 1 + z2 – 2 ∙ 2 ∙ z + 4 = 9 + 1 + 4 + 11
⇔ (x – 3)2 + (y – 1)2 + (z – 2)2 = 25.
Vậy phương trình đã cho là phương trình của một mặt cầu có tâm I(3; 1; 2) và bán kính R = = 5.
Cách 2:
Ta có x2 + y2 + z2 – 6x – 2y – 4z – 11 = 0
⇔ x2 + y2 + z2 – 2 ∙ 3 ∙ x – 2 ∙ 1 ∙ y – 2 ∙ 2 ∙ z – 11 = 0
Khi đó a2 + b2 + c2 – d = 32 + 12 + 22 – (– 11) = 25 > 0.
Vậy phương trình đã cho là phương trình của một mặt cầu có tâm I(3; 1; 2) và bán kính R = = 5.
III. Một số ứng dụng của phương trình mặt cầu trong thực tiễn
Luyện tập 5: Trong Ví dụ 6, giả sử người đi biển di chuyển theo đường thẳng từ vị trí I(21; 35; 50) đến vị trí D(5 121; 658; 0). Tìm vị trí cuối cùng trên đoạn thẳng ID sao cho người đi biển còn có thể nhìn thấy được ánh sáng từ ngọn hải đăng.
Lời giải:
Ta có phương trình mặt cầu mô tả ranh giới ngọn hải đăng:
Vị trí cuối cùng thấy ánh sáng cách tâm mặt cầu 1 đoạn bằng R:
Gọi M(x;y;z) là điểm cuối cùng thấy ánh sáng. Tọa độ M thỏa mãn:
M thuộc đoạn ID. Ta có vector chỉ phương của ID:
Phương trình tham số của đoạn ID:
Thay x,y,z vào phương trình mặt cầu:
Tính tọa độ M:
Bài tập
Bài tập 1: Tâm của mặt cầu (S): (x – 2)2 + (y – 3)2 + (z + 4)2 = 16 có tọa độ là:
A. (– 2; – 3; 4).
B. (2; 3; – 4).
C. (2; – 3; – 4).
D. (2; – 3; 4).
Đáp án: B
Bài tập 2: Bán kính của mặt cầu (S): (x – 1)2 + (y – 2)2 + (z – 3)2 = 9 bằng:
A. 3.
B. 9.
C. 81.
D. .
Đáp án: A
Bán kính của mặt cầu (S): (x – 1)2 + (y – 2)2 + (z – 3)2 = 9 bằng .
Bài tập 3: Mặt cầu (S) tâm I(– 5; – 2; 3) bán kính 4 có phương trình là:
A. (x – 5)2 + (y – 2)2 + (z + 3)2 = 4.
B. (x – 5)2 + (y – 2)2 + (z + 3)2 = 16.
C. (x + 5)2 + (y + 2)2 + (z – 3)2 = 4.
D. (x + 5)2 + (y + 2)2 + (z – 3)2 = 16.
Đáp án: D
Phương trình mặt cầu có tâm I(-5; -2; 3) và bán kính R = 4 là:
Bài tập 4: Cho mặt cầu có phương trình (x – 1)2 + (y + 2)2 + (z – 7)2 = 100.
a) Xác định tâm và bán kính của mặt cầu.
b) Mỗi điểm A(1; 1; 1), B(9; 4; 7), C(9; 9; 10) nằm trong, nằm ngoài hay nằm trên mặt cầu đó?
Lời giải:
Bài tập 5: Cho phương trình x2 + y2 + z2 – 4x – 2y – 10z + 2 = 0
Chứng minh rằng phương trình trên là phương trình của một mặt cầu. Xác định tâm và bán kính của mặt cầu đó.
Lời giải:
Ta có x2 + y2 + z2 – 4x – 2y – 10z + 2 = 0
⇔ x2 – 2 ∙ 2 ∙ x + 4 + y2 – 2y + 1 + z2 – 2 ∙ 5 ∙ z + 25 = 4 + 1 + 25 – 2
⇔ (x – 2)2 + (y – 1)2 + (z – 5)2 = 28.
Vậy phương trình đã cho là phương trình mặt cầu tâm I(2; 1; 5) và bán kính
Bài tập 6: Lập phương trình mặt cầu (S) trong mỗi trường hợp sau:
a) (S) có tâm I(3; – 7; 1) và bán kính R = 2;
b) (S) có tâm I(– 1; 4; – 5) và đi qua điểm M(3; 1; 2);
c) (S) có đường kính là đoạn thẳng CD với C(1; – 3; – 1) và D(– 3; 1; 2).
Lời giải:
a) Mặt cầu có tâm I(3, -7, 1) và bán kính (R = 2
b) Mặt cầu có tâm I(-1, 4, -5) và đi qua điểm M(3, 1, 2):
Khoảng cách từ tâm I(-1, 4, -5) đến điểm M(3, 1, 2):
Phương trình của mặt cầu có tâm và bán kính
c) Mặt cầu có đường kính là đoạn thẳng CD với C(1, -3, -1) và D(-3, 1, 2)
Tâm của mặt cầu là trung điểm của đoạn thẳng CD. Tọa độ của tâm I là:
Bán kính R là nửa độ dài của đoạn thẳng CD.
Phương trình của mặt cầu:
Bài tập 7: Hệ thống định vị toàn cầu (tên tiếng Anh là: Global Positioning System, viết tắt là GPS) là một hệ thống cho phép xác định chính xác vị trí của một vật thể trong không gian (Hình 42). Ta có thể mô phỏng cơ chế hoạt động của hệ thống GPS trong không gian như sau: Trong cùng một thời điểm, toạ độ của một điểm M trong không gian sẽ được xác định bởi bốn vệ tinh cho trước, trên mỗi vệ tinh có một máy thu tín hiệu. Bằng cách so sánh sự sai lệch về thời gian từ lúc tín hiệu được phát đi với thời gian nhận phản hồi tín hiệu đó, mỗi máy thu tín hiệu xác định được khoảng cách từ vệ tinh đến vị trí M cần tìm tọa độ. Như vậy, điểm M là giao điểm của bốn mặt cầu với tâm lần lượt là bốn vệ tinh đã cho.
Ta xét một ví dụ cụ thể như sau:
Trong không gian với hệ tọa độ Oxyz, cho bốn vệ tinh A(3; – 1; 6), B(1; 4; 8), C(7; 9; 6), D(7; – 15; 18). Tìm tọa độ của điểm M trong không gian biết khoảng cách từ các vệ tinh đến điểm M lần lượt là MA = 6, MB = 7, MC = 12, MD = 24.
Lời giải: