I. Đạo hàm của một số hàm số sơ cấp cơ bản
Hoạt động 1:
a) Tính đạo hàm của hàm số y = x2 tại điểm x0 bất kì bằng định nghĩa.
b) Dự đoán đạo hàm của hàm số y = xn tại điểm x bất kì
Lời giải:
a)
b)
=>
Luyện tập 1: Cho hàm số y = x22
a) Tính đạo hàm của hàm số trên tại điểm x bất kì.
b) Tính đạo hàm của hàm số trên tại điểm x0 =1
Lời giải:
a) Ta có: y' = (x22)' = 22x21
b) Đạo hàm của hàm số tại điểm x0 = –1 là y'(–1) = 22 . (–1)21 = 22 . (–1) = –22
Hoạt động 2: Tính đạo hàm của hàm số tại điểm x0 = 1 bằng định nghĩa
Lời giải:
Luyện tập 2: Tính đạo hàm của hàm số tại điểm x0 = 9
Lời giải:
Ta có :với x > 0.
Vậy đạo hàm của hàm số trên tại điểm x0 = 9 là
Hoạt động 3: Bằng cách sử dụng kết quả tính đạo hàm của hàm số y = sinx tại điểm x bất kì bằng định nghĩa
Lời giải:
Luyện tập 3: Tính đạo hàm của hàm số f(x) = sinx tại điểm
Lời giải:
Ta có f’(x) = cosx.
Đạo hàm của hàm số trên tại điểm là:
Hoạt động 4: Bằng định nghĩa, tính đạo hàm của hàm số y = cosx tại điểm x bất kì
Lời giải:
Luyện tập 4: Một vật dao động theo phương trình f(x) = cosx, trong đó x là thời gian tính theo giây. Tính vận tốc tức thời của vật tại thời điểm x0 = 2
Lời giải:
Ta có:f’(x)= –sinx
Vậy vận tốc tức thời của vật tại thời điểm x0 = 2 là: f’(2) = –sin2
Hoạt động 5: Bằng định nghĩa, tính đạo hàm của hàm số y = tanx tại điểm x bất kì, (k ∈ ℤ)
Lời giải:
Luyện tập 5: Tính đạo hàm của hàm số f(x) = tanx tại điểm
Lời giải:
Có
Hoạt động 6: Bằng định nghĩa, tính đạo hàm của hàm số y = cotx tại điểm x bất kì, x ≠ kπ (k∈ ℤ)
Lời giải:
Xét ∆x là số gia của biến số tại điểm x bất kì, x ≠ kπ (k ∈ ℤ).
Ta có: ∆y = f(x + ∆x) – f(x) = cot(x + ∆x) – cotx.
Suy ra
Vậy đạo hàm của hàm số y = cotx tại điểm x bất kì, x ≠ kπ (k ∈ ℤ) là
Luyện tập 6: Tính đạo hàm của hàm số f(x) = cotx tại điểm
Lời giải:
Hoạt động 7: Bằng cách sử dụng kết quả tính đạo hàm của hàm số y = ex tại điểm x bất kì bằng định nghĩa
Lời giải:
Luyện tập 7: Tính đạo hàm của hàm số f(x) = 10x tại điểm x0 = –1
Lời giải:
Ta có f’(x) = 10xln10
Đạo hàm của hàm số trên tại điểm x0 =–1 là
Hoạt động 8: Bằng cách sử dụng kết quả tính đạo hàm của hàm số y = lnx tại điểm x dương bất kì bằng định nghĩa
Lời giải:
Luyện tập 8: Tính đạo hàm của hàm số f(x) = logx tại điểm
Lời giải:
Ta có: (x > 0).
Đạo hàm của hàm số trên tại điểm là
Hoạt động 9: Cho hai hàm số f(x), g(x) xác định trên khoảng (a; b) cùng có đạo hàm tại điểm x0 ∈ (a; b).
a) Xét hàm số h(x) = f(x) + g(x), x ∈ (a; b). So sánh:
và
b) Nêu nhận xét về h'(x0) và f'(x0) + g’(x0
Lời giải:
a) Có
b)
Luyện tập 9: Tính đạo hàm của hàm số tại điểm x dương bất kì
Lời giải:
Luyện tập 10: Tính đạo hàm của hàm số f(x) = tanx + cotx tại điểm
Lời giải:
Xét f(x) = tanx + cotx, ta có: với và x ≠ kπ (k ∈ ℤ).
Vậy đạo hàm của hàm số trên là
Hoạt động 10: Cho hàm số y = f(u) = sinu; u = g(x) = x2.
a) Bằng cách thay đổi u bởi x2 trong biểu thức sinu, hãy biểu thị giá trị của u theo biến số x.
b) Xác định hàm số y = f(g(x))
Lời giải:
a)
b) Hàm số:
Luyện tập 11: Hàm số y = log2(3x + 1)là hàm hợp của hai hàm số nào?
Lời giải:
Luyện tập 12: Tìm đạo hàm của mỗi hàm số sau:
a) y = e3x + 1
b) y = log3(2x – 3)
Lời giải:
a) Đặt u = 3x + 1, ta có y = eu.
Khi đó và
Theo công thức tính đạo hàm của hàm hợp, ta có:
b) Đặt u = 2x – 3, ta có y = log3u.
Khi đó và
Theo công thức tính đạo hàm của hàm hợp, ta có:
Bài tập 1: Cho u = u(x), v = v(x), w = w(x) là các hàm số tại điểm x thuộc khoảng xác định. Phát biểu nào sau đây là đúng?
a) (u + v + w)' = u' + v' + w';
b) (u + v – w)' = u' + v' – w';
c) (uv)' = u'v';
d) với v = v(x) ≠ 0, v' = v'(x) ≠ 0.
Lời giải:
Phát biểu đúng là: a), b).
Phát biểu c) sai vì (uv)' = u'v + uv'.
Phát biểu (d) sai vì
Bài tập 2: Cho u = u(x), v = v(x), w = w(x) là các hàm số có đạo hàm tại điểm x thuộc khoảng xác định. Chứng minh rằng (u . v . w)' = u' . v . w + u . v' . w + u . v . w'.
Lời giải:
Bài tập 3: Tìm đạo hàm của mỗi hàm số sau:
a) y = 4x3 – 3x2 + 2x + 10;
b,
c)
d) y = 3sinx + 4cosx – tanx;
e) y = 4x + 2ex;
g) y = xlnx.
Lời giải:
a) y' = (4x3)' – (3x2)' + (2x)' + (10)'
= 4.3.x2 – 3.2.x + 2.1
= 12x2 – 6x + 2.
b)
c)
d) y’ = (3sinx)' + (4cosx)' – (tanx)'
e) y' = (4x)' + (2ex)'
= 4xln4 + 2ex.
g) y' = (xlnx)' = (x)'.lnx + x.(lnx)'
Bài tập 4: Cho hàm số f(x) = 23x + 2.
a) Hàm số f(x) là hàm hợp của các hàm số nào?
b) Tìm đạo hàm của f(x)
Lời giải:
a) Hàm số f(x) là hàm hợp của hai hàm số
b)
Bài tập 5: Tìm đạo hàm của mỗi hàm số sau:
a) y = sin3x + sin2x
b) y = log2(2x + 1) + 3−2x + 1
Lời giải:
Bài tập 6: Viết phương trình tiếp tuyến của đồ thị mỗi hàm số sau:
a) y = x3 – 3x2 + 4 tại điểm có hoành độ x0 = 2;
b) y = lnx tại điểm có hoành độ x0 = e;
c) y = ex tại điểm có hoành độ x0 = 0.
Lời giải:
a) Từ y = x3 – 3x2 + 4, ta có: y' = (x3)' – (3x2)' + (4)' = 3x2 – 6x.
Do đó y'(2) = 3.22 – 6.2 = 12 – 12 = 0.
y(2) = 23 – 3.22 + 4 = 8 – 12 + 4 = 0.
Phương trình tiếp tuyến của đồ thị tại điểm có hoành độ x0 = 2 là:
y = 0(x – 2) + 0 = 0.
b) Từ y = lnx, ta có:
Do đó và = lne = 1.
Phương trình tiếp tuyến của đồ thị tại điểm có hoành độ x0 = e là
hay
c) Từ y = ex, ta có: y' = (ex)' = ex.
Do đó y'(0) = e0 = 1 và y(0) = e0 = 1.
Phương trình tiếp tuyến của đồ thị tại điểm có hoành độ x0 = 0 là:
y = 1(x – 0) +1 hay y = x + 1.
Bài tập 7: Một viên đạn được bắn từ mặt đất theo phương thẳng đứng với tốc độ ban đầu v0 = 196 m/s (bỏ qua sức cản của không khí). Tìm thời điểm mà tốc độ của viên đạn bằng 0. Khi đó viên đạn cách mặt đất bao nhiêu mét (lấy g = 9,8 m/s2)?
Lời giải:
Bài tập 8: Cho mạch điện như Hình 5. Lúc đầu tụ điện có điện tích Q0. Khi đóng khóa K, tụ điện phóng điện qua cuộn dây; điện tích q của tụ điện phụ thuộc vào thời gian t theo công thức q(t) = Q0sinωt, trong đó ω là tốc độ góc. Biết rằng cường độ I(t) của dòng điện tại thời điểm t được tính theo công thức I(t) = q'(t). Cho biết Q0 = 10–8 (C) và ω = 106π (rad/s). Tính cường độ dòng điện tại thời điểm t = 6 (s) (tính chính xác đến 10–5 mA)
Lời giải:
I(t) = q'(t) = (Q0sinωt)' = Q0ω.cosωt
Cường độ của dòng điện tại thời điểm t = 6 (s) là:
I(6) = 10–8 ∙106π.cos(106π.6) = 10–2π.cos0 = 0,01π (A).