Giải SGK Toán 12 Chân trời sáng tạo Bài 3: Biểu thức tọa độ của các phép toán vectơ

Hoạt động khởi động: Trong không gian Oxyz, có thể thực hiện các phép toán vectơ dựa trên tọa độ của chúng tương tự như đã làm trong mặt phẳng Oxy không?

a=x;y;z,a'=x';y';z'

a+a'=?

Hoạt động khởi động trang 58 Toán 12 Tập 1 Chân trời sáng tạo | Giải Toán 12

Trả lời:

- Trong không gian Oxyz, ta có thể thực hiện các phép toán vectơ dựa trên tọa độ của chúng tương tự như đã làm trên mặt phẳng tọa độ.

1. Biểu thức tọa độ của tổng, hiệu hai vectơ và tích của một số với một vectơ

Khám phá 1: Trong không gian Oxyz, cho hai vectơ a=a1;a2;a3b=b1;b2;b3 với số thực m.

a) Biểu diễn từng vectơ a và b theo ba vectơ i,j,k .

b) Biểu diễn các vectơ a+b,ab,ma theo ba vectơ i,j,k, từ đó suy ra tọa độ của các vectơ a+b,ab,ma .

Trả lời:


Thực hành 1: Cho ba vectơ a=2;5;3,b=0;2;1,c=1;7;2.

a) Tìm tọa độ của vectơ d=4a13b+3c .

b) Tìm tọa độ của vectơ e=a4b2c .

c) Chứng minh a cùng phương với vectơ m=6;15;9 .

Trả lời:


Vận dụng 1: Một thiết bị thăm dò đáy biển đang lặn với vận tốc v=10;8;3 (Hình 1). Cho biết vận tốc của dòng hải lưu của vùng biển là w=3,5;1;0 .

a) Tìm tọa độ của vectơ tổng hai vận tốc v và w .

b) Giả sử thiết bị thăm dò lặn với vận tốc u=7;2;0 , hãy nêu nhận xét về vectơ vận tốc của nó so với vectơ vận tốc của dòng hải lưu.

Vận dụng 1 trang 59 Toán 12 Tập 1 Chân trời sáng tạo | Giải Toán 12

Trả lời:

a) v+w=10+3,5;8+1;3+0=13,5;9;3 .

b) Vì u=7;2;0=23,5;1;0=2w .

Do đó hai vectơ này cùng phương, cùng hướng với nhau.

2. Biểu thức tọa độ của tích vô hướng

Khám phá 2: Cho hai vectơ a=a1;a2;a3 và b=b1;b2;b3.

a) Biểu diễn từng vectơ a và b theo ba vectơ i,j,k .

b) Tính các tích vô hướng i2,j2,k2,i.j,j.k,k.i .

c) Tính tích vô hướng a.b theo tọa độ của hai vectơ a và b .

Trả lời:

a) ;  

b) 

c)  = ).  = 


Thực hành 2: Cho ba vectơ m=5;4;9n=2;7;0p=6;3;4.

a) Tính m.n,m.p .

b) Tính m,n,cosm,n .

c) Cho q=1;2;0 . Vectơ q có vuông góc với p không?

Trả lời:

a) m.n=5.2+4.7+9.0=38 .

m.p=5.6+4.3+9.4=54

b)

Thực hành 2 trang 60 Toán 12 Tập 1 Chân trời sáng tạo | Giải Toán 12

c) Có p.q=6.1+3.2+4.0=0 . Do đó pq .

Vận dụng 2: Một thiết bị thăm dò đáy biển (Hình 2) được đẩy bởi một lực f=5;4;2 (đơn vị: N) giúp thiết bị thực hiện độ dời a=70;20;40(đơn vị: m). Tính công sinh bởi lực f .

Vận dụng 2 trang 60 Toán 12 Tập 1 Chân trời sáng tạo | Giải Toán 12

Trả lời:

Công sinh bởi lực được f tính theo công thức

A=f.a=5.70+4.20+2.40=510 J.

3. Vận dụng

Khám phá 3: Cho hai điểm AxA;yA;zA,BxB;yB;zB. Từ biểu thức AB=OBOA, tìm tọa độ của vectơ AB  theo tọa độ hai điểm A, B.

Trả lời:


Thực hành 3: Cho ba điểm M(7; −2; 0), N(−9; 0; 4), P(0; −6; 5).

a) Tìm tọa độ của các vectơ MN,NP,MP .

b) Tính các độ dài MN, NP, MP.

Trả lời:

a) MN=97;0+2;40=16;2;4 ;

NP=0+9;60;54=9;6;1;

MP=07;6+2;50=7;4;5.

b) MN=162+22+42=269.

NP=92+62+1=118.

MP=72+42+52=310.

Khám phá 4: Cho tam giác ABC có A(xA; yA; zA), B(xB; yB; zB), C(xC; yC; zC). Gọi M(xM; yM; zM) là trung điểm của đoạn thẳng AB và G(xG; yG; zG) là trọng tâm của tam giác ABC. Sử dụng các hệ thức vectơ OM=12OA+OB;OG=13OA+OB+OC, tìm tọa độ của các điểm M và G.

Trả lời:

Ta có OA=xA;yA;zA;OB=xB;yB;zB;OC=xC;yC;zC .

Có Hoạt động khám phá 4 trang 61 Toán 12 Tập 1 Chân trời sáng tạo | Giải Toán 12

Do đó MxA+xB2;yA+yB2;zA+zB2 .

Hoạt động khám phá 4 trang 61 Toán 12 Tập 1 Chân trời sáng tạo | Giải Toán 12

Do đó GxA+xB+xC3;yA+yB+yC3;zA+zB+zC3 .

Thực hành 4: Cho tam giác MNP có M(2; 1; 3), N(1; 2; 3), P(−3;−1; 0). Tìm tọa độ:

a) Các điểm M', N', P' lần lượt là trung điểm của các cạnh NP, MP, MN;

b) Trọng tâm G của tam giác M'N'P'.

Trả lời:


Vận dụng 3: Cho hình chóp S.ABC có SA  (ABC), SA = a và đáy ABC là tam giác đều cạnh a, O là trung điểm của BC. Bằng cách thiết lập hệ tọa độ như Hình 3, hãy tìm tọa độ:

a) Các điểm A, S, B, C.

b) Trung điểm M của SB và trung điểm N của SC.

c) Trọng tâm G của tam giác SBC.

Vận dụng 3 trang 62 Toán 12 Tập 1 Chân trời sáng tạo | Giải Toán 12

Trả lời:

a)

Vận dụng 3 trang 62 Toán 12 Tập 1 Chân trời sáng tạo | Giải Toán 12

Vì ABC là tam giác đều cạnh a, O là trung điểm của BC nên AO là đường cao.

Suy ra AO=a32 và OB = OC = a2 .

Vì OC và i cùng hướng và OC=a2 nên OC=a2i . Suy ra Ca2;0;0 .

Vì OB và i ngược hướng và OB=a2 nên OB=a2i . Suy ra Ba2;0;0 .

Vì OA và j cùng hướng và OA=a32 nên OA=a32j . Suy ra A0;a32;0

Gọi I là hình chiếu của S trên Oz.

Ta có OI = SA.

Vì OI và k cùng hướng và OI = a nên OI=ak .

Theo quy tắc hình bình hành có: OS=OA+OI=a32j+ak .

Do đó S0;a32;a .

b) Tọa độ trung điểm M của SB là

M0a22;a32+02;a+02 hay Ma4;a34;a2 .

Tọa độ trung điểm N của SC là

N0+a22;a32+02;a+02 hay Na4;a34;a2 .

c) Tọa độ trọng tâm G của tam giác SBC là:

G0a2+a23;0+a32+03;0+a+03 hay G0;a36;a3 .

Thực hành 5: Cho tam giác MNP có M(0; 1; 2), N(5; 9; 3), P(7; 8; 2).

a) Tìm tọa độ điểm K là chân đường cao kẻ từ M của tam giác MNP.

b) Tìm độ dài cạnh MN và MP.

c) Tính góc M.

Trả lời:


Vận dụng 4: Trên phần mềm mô phỏng việc điều khiển drone giao hàng trong không gian Oxyz, một đội gồm ba drone giao hàng A, B, C đang có tọa độ là A(1; 1; 1), B(5; 7; 9), C(9; 11; 4). Tính:

a) Các khoảng cách giữa mỗi cặp drone giao hàng.

b) Góc BAC^ .

Vận dụng 4 trang 64 Toán 12 Tập 1 Chân trời sáng tạo | Giải Toán 12

Trả lời:

a) Ta có AB=4;6;8 ; AC=8;10;3 ; BC=4;4;5 .

Khi đó: AB=42+62+82=229;

AC=82+102+32=173;

BC=42+42+52=57.

b) Ta có cosBAC^=AB.ACAB.AC=4.8+6.10+8.3229.173=11925017 BAC^35°2'.

Bài tập

Bài tập 1: Tính:

a) a.b với a=5;2;4,b=4;2;2 .

b) c.d với c=2;3;4,d=6;5;3 .

Trả lời:

a) a.b=5.4+2.2+4.2=8 .

b) c.d=2.6+3.5+4.3=15 .

Bài tập 2: Cho hai vectơ a=0;1;3 và b=2;3;1. Tìm tọa độ của vectơ 2b32a.

Trả lời:


Bài tập 3: Cho ba điểm A(2; 1; −1), B(3; 2; 0) và C(2; −1; 3).

a) Chứng minh A, B, C là ba đỉnh của một tam giác. Tính chu vi tam giác ABC.

b) Tìm tọa độ trung điểm của các cạnh của tam giác ABC.

c) Tìm tọa độ trọng tâm G của tam giác ABC.

Trả lời:

a) Ta có AB=1;1;1,AC=0;2;4,BC=1;3;3 .

Vì AB và AC không cùng phương nên A, B, C không thẳng hàng.

Do đó A, B, C là ba đỉnh của một tam giác.

Ta có chu vi tam giác ABC là:

AB + AC + BC

12+12+12+02+22+42+12+32+32

=3+25+19

b) Gọi M, N, P lần lượt là trung điểm của cạnh AB, BC, CA.

Tọa độ điểm M là

M2+32;1+22;1+02 hay M52;32;12 .

Tọa độ điểm N là

N3+22;212;0+32 hay N52;12;32 .

Tọa độ điểm P là

P2+22;112;1+32 hay P2;0;1 .

c) Tọa độ trọng tâm G của tam giác ABC là

G2+3+23;1+213;1+0+33 hay G73;23;23 .

Bài tập 4: Cho điểm M(1; 2; 3). Hãy tìm tọa độ của các điểm:

a) M1, M2, M3 lần lượt là hình chiếu vuông góc của M trên các mặt phẳng (Oxy), (Oyz), (Oxz).

b) Gọi M', M", M"' lần lượt là các điểm thỏa mãn:

• O là trung điểm của MM';

• MM" vuông góc với mặt phẳng (Oxy) tại điểm H sao cho H là trung điểm của MM".

• MM"' vuông góc và cắt trục Oy tại điểm K sao cho K là trung điểm của MM"'.

Trả lời:

a) Ta có .

b)  là trung điểm của  nên  

  . 

Vậy .

Vì  nên 

Ta có 

 ⇒  ⇒ 

⇒  ⇒

Vì vậy .

Vì  là trung điểm của  nên  

 . 

Vậy .

Vì  nên  ⇒ 

Vì  ⇒ ⇔  ⇔ .

Vì  là trung điểm của  nên  

 . 

Vậy .


Bài tập 5: Cho ba điểm A(3; 3; 3), B(1; 1; 2) và C(5; 3; 1).

a) Tìm điểm M trên trục Oy cách đều hai điểm B, C.

b) Tìm điểm N trên mặt phẳng (Oxy) cách đều ba điểm A, B, C.

Trả lời:

a) Vì M  Oy nên M(0; y; 0).

Vì M cách đều hai điểm B, C nên MB = MC hay MB2 = MC2

12+1y2+22=52+3y2+12

4y=29y=294

Vậy M0;294;0 .

b) Vì N  (Oxy) nên N(x; y; 0).

Vì N cách đều ba điểm A, B, C nên NA = NB = NC hay NA2 = NB2 = NC2

Bài 5 trang 64 Toán 12 Tập 1 Chân trời sáng tạo | Giải Toán 12

Vậy N2;134;0 .

Bài tập 6: Cho các điểm A(−1; −1; 0), B(0; 3; −1), C(−1; 14; 0), D(−3; 6; 2). Chứng minh rằng ABCD là hình thang.

Trả lời:

Ta có: . Vì  nên  và  cùng phương. 

Mặt khác,  và  không cùng phương nên . Từ đó suy ra tứ giác  là hình thang.

Bài tập 7: Cho hình hộp ABCD.A'B'C'D' có A(1; 0; 1), B(2; 1; 2), D(1; −1; 1), C'(4; 5; −5). Tìm tọa độ các đỉnh còn lại của hình hộp.

Trả lời:

Bài 7 trang 64 Toán 12 Tập 1 Chân trời sáng tạo | Giải Toán 12

Do ABCD.A'B'C'D' là hình hộp nên các mặt là hình bình hành.

Ta có AD=BC  11=xC210=yC111=zC2xC=2yC=0zC=2.

Vậy C(2; 0; 2).

Ta có DC=D'C' 21=4xD'1=5yD'21=5zD' xD'=3yD'=4zD'=6.

Vậy D'(3; 4; −6).

Ta có AD=A'D' 11=3xA'10=4yA'11=6zA' xA'=3yA'=5zA'=6.

Vậy A'(3; 5; −6).

Ta có A'D'=B'C'33=4xB'45=5yB'6+6=5zB'xB'=4yB'=6zB'=5.

Vậy B'(4; 6; −5).

Bài tập 8: Tính công sinh bởi lực F20;30;10  (đơn vị: N) tạo bởi một drone giao hàng (Hình 7) khi thực hiện một độ dịch chuyển d=150;200;100 (đơn vị: m).

Trả lời:

Bài 8 trang 64 Toán 12 Tập 1 Chân trời sáng tạo | Giải Toán 12

Công sinh bởi lực F là A=F.d = 20.150 + 30.200 + (-10).100 = 8000 J.