Giải SGK Toán 11 Kết nối tri thức Bài 16: Giới hạn của hàm số

Mở đầu: Trong Thuyết tương đối của Einstein, khối lượng của vật chuyển động với vận tốc v cho bởi công thức

m=m01v2c2,

trong đó m0 là khối lượng của vật khi nó đứng yên, c là vận tốc ánh sáng. Chuyện gì xảy ra với khối lượng của vật khi vận tốc của vật gần với vận tốc ánh sáng?

Trả lời:

Từ công thức khối lượng m=m01v2c2

ta thấy m là một hàm số của v, với tập xác định là nửa khoảng [0; c). Rõ ràng khi v tiến gần tới vận tốc ánh sáng, tức là v ⟶ c, ta có 1v2c20. Do đó limvcmv=+, nghĩa là khối lượng m của vật trở nên vô cùng lớn khi vận tốc của vật gần tới vận tốc ánh sáng.

1. Giới hạn hữu hạn của hàm số tại một điểm

Hoạt động 1: Nhận biết khái niệm giới hạn tại một điểm

Cho hàm số fx=4x2x2.

a) Tìm tập xác định của hàm số f(x).

b) Cho dãy số xn=2n+1n. Rút gọn f(xn) và tính giới hạn của dãy (un) với un = f(xn).

c) Với dãy số (xn) bất kì sao cho xn ≠ 2 và xn ⟶ 2, tính f(xn) và tìm limn+fxn.

Trả lời:

a) D = R \ {2}

b) f(xn)=4(2n+1n)22n+1n2=(2n+1n2)(2n+1n+2)2n+1n2=2n+1n2

limun=lim(2n+1n2)=4

c) f(xn)=4x2nxn2

limn+f(xn)=4

Luyện tập 1: Tính limx1x1x1.

Trả lời:

Do mẫu thức có giới hạn là 0 khi x ⟶ 1 nên ta không thể áp dụng ngay quy tắc tính giới hạn của thương hai hàm số.

Lại có: x1x1=x+1x1x1=x+1.

Do đó limx1x1x1=limx1x+1=limx1x+limx11=1+1=2.

Hoạt động 2: Nhận biết khái niệm giới hạn một bên

Cho hàm số HĐ2 trang 113 Toán 11 Tập 1 | Kết nối tri thức Giải Toán 11.

a) Cho xn = 1 - 1n+1 và x'n=1+1n. Tính yn = f(xn) và y'n = f(x'n).

b) Tìm giới hạn của các dãy số (yn) và (y'n).

c) Cho các dãy số (xn) và (x'n) bất kì sao cho xn < 1 < x'n và xn ⟶ 1, x'n ⟶ 1, tính limn+fxn và limn+fx'n.

Trả lời:

a) Với xn=nn+1yn=f(xn)=|nn+11|nn+11

Do n<n+1nn+1<1nn+11<0

yn=(nn+11)nn+11=1

Với xn=n+1nyn=f(xn)=|n+1n1|n+1n1

Do n+1>nn+1n>1n+1n1>0

yn=n+1n1n+1n1=1

b) lim(yn)=lim(1)=1

lim(yn)=lim1=1

c) limn+f(xn)=1

limn+f(xn)=1


2. Giới hạn hữu hạn của hàm số tại vô cực

Hoạt động 3: Nhận biết khái niệm giới hạn tại vô cực

Cho hàm số fx=1+2x1 có đồ thị như Hình 5.4.

HĐ3 trang 114 Toán 11 Tập 1 | Kết nối tri thức Giải Toán 11

Giả sử (xn) là dãy số sao cho xn > 1, xn ⟶ +∞. Tính f(xn) và tìm .

Trả lời:

Với (xn) là dãy số sao cho xn > 1, xn ⟶ +∞.

Ta có: fxn=1+2xn1.

Khi xn ⟶ +∞ thì limn+2xn1=0.

Do đó limn+fxn=limn+1+2xn1=1.

Luyện tập 3: Tính limx+x2+2x+1.

Trả lời:

limx+x2+2x+1=limx+x(x+1)(x+1)2=limx+xx+1=limx+11+1x=1

Vận dụng: Cho tam giác vuông OAB với A = (a; 0) và B = (0; 1) như Hình 5.5. Đường cao OH có độ dài là h.

Vận dụng trang 115 Toán 11 Tập 1 | Kết nối tri thức Giải Toán 11

a) Tính h theo a.

b) Khi điểm A dịch chuyển về O, điểm H thay đổi thế nào? Tại sao?

c) Khi A dịch chuyển ra vô cực theo chiều dương của trục Ox, điểm H thay đổi thế nào? Tại sao?

Trả lời:

a) Ta có: A = (a; 0) ⇒ OA = a; B = (0; 1) ⇒ OB = 1

Tam giác OAB vuông tại O có đường cao OH nên ta có

1OH2=1OA2+1OB2

Do đó, 1h2=1a2+112h=a2a2+1 = aa2+1.

b) Khi điểm A dịch chuyển về O, ta có OA = a = 0, suy ra h = 0, do đó điểm H dịch chuyển về điểm O.

c) Khi A dịch chuyển ra vô cực theo chiều dương của trục Ox, ta có OA = a ⟶ +∞.

Ta có: lima+h=lima+a2a2+1=lima+a2a21+1a2=lima+11+1a2=1.

Do đó, điểm H dịch chuyển về điểm B.

3. Giới hạn vô cực của một hàm số tại một điểm

Hoạt động 4: Nhận biết khái niệm giới hạn vô cực

Xét hàm số fx=1x2 có đồ thị như Hình 5.6.

HĐ4 trang 115 Toán 11 Tập 1 | Kết nối tri thức Giải Toán 11

Cho xn=1n, chứng tỏ rằng f(xn) ⟶ +∞.

Trả lời:

Ta có: D = R \{0}

limx0f(x)=limx+f(xn)=limx+1(1n)2=limx+n2=+

Vậy f(xn)+


Hoạt động 5: Cho hàm số fx=1x1. Với các dãy số (xn) và (x'n) cho bởi xn=1+1nx'n=11n, tính limn+fxn và limn+fx'n.

Trả lời:

Ta có: limn+fxn=limn+1xn1=limn+11+1n1=limn+11n=limn+n=+;

limn+fx'n=limn+1x'n1=limn+111n1=limn+11n=limn+n=.

Luyện tập 4: Tính các giới hạn sau:

a) Luyện tập 4 trang 116 Toán 11 Tập 1 | Kết nối tri thức Giải Toán 11;

b) limx212x.

Trả lời:

a) Xét hàm số Luyện tập 4 trang 116 Toán 11 Tập 1 | Kết nối tri thức Giải Toán 11. Lấy dãy số (xn) bất kì sao cho xn ≠ 0, xn ⟶ 0.

Do đó, Luyện tập 4 trang 116 Toán 11 Tập 1 | Kết nối tri thức Giải Toán 11

b) Đặt gx=12x. Với mọi dãy số (xn) trong khoảng (– ∞; 2) mà limn+xn=2, ta có

limn+fxn=limn+12xn=+.

Do đó limx2fx=limx212x=+.

Luyện tập 5: Tính limx2+2x1x2 và limx22x1x2.

Trả lời:

x2+x2>0

limx2+2x1x2=limx2+2×21x2=+

x2x2<0

limx22x1x2=limx22×21x2=


Bài tập

Bài 5.7: Cho hai hàm số fx=x21x1 và g(x) = x + 1. Khẳng định nào sau đây là đúng?

a) f(x) = g(x);

b) limx1fx=limx1gx.

Trả lời:

+) Biểu thức f(x) có nghĩa khi x – 1 ≠ 0 ⇔ x ≠ 1.

Ta có: fx=x21x1=x1x+1x1=x+1, với mọi x ≠ 1.

Biểu thức g(x) = x + 1 có nghĩa với mọi x.

Do đó, điều kiện xác định của hai hàm số f(x) và g(x) khác nhau, vậy khẳng định a) là sai.

+) Ta có: limx1fx=limx1x21x1=limx1x+1=1+1=2;

limx1gx=limx1x+1=1+1=2.

Vậy limx1fx=limx1gx nên khẳng định b) là đúng.

Bài 5.8: Tính các giới hạn sau:

a) limx0x+224x;

b) limx0x2+93x2.

Trả lời:

a) limx0(x+2)24x=limx0x2+4xx=limx0(x+4)=4

b) limx0x2+93x2=limx01x2+9+3=16


Bài 5.9: Cho hàm số Bài 5.9 trang 118 Toán 11 Tập 1 | Kết nối tri thức Giải Toán 11 (hàm Heaviside, thường được dùng để mô tả việc chuyển trạng thái tắt/mở của dòng điện tại thời điểm t = 0).

Tính limt0+Ht và limt0Ht.

Trả lời:

Với dãy số (tn) bất kì sao cho tn < 0 và tn ⟶ 0, ta có H(tn) = 0.

Do đó limt0Ht=limn+Htn=limn+0=0.

Tương tự, với dãy số (tn) bất kì sao cho tn > 0 và tn ⟶ 0, ta có H(tn) = 1.

Do đó limt0+Ht=limn+Htn=limn+1=1.

Bài 5.10: Tính các giới hạn một bên:

a) limx1+x2x1;

b) limx4x2x+14x.

Trả lời:

a) limt1+(x2)=1<0

limt1+(x1)>0

limt1+x2x1=

b) limt4(x2x+1)=13>0

limt4(4x)>0

limt4x2x+14x=+


Bài 5.11: Cho hàm số Bài 5.11 trang 118 Toán 11 Tập 1 | Kết nối tri thức Giải Toán 11.

Tìm limx2+gx và limx2gx.

Trả lời:

Ta có: Bài 5.11 trang 118 Toán 11 Tập 1 | Kết nối tri thức Giải Toán 11

Do đó, limx2+gx=limx2+x3=23=1;

limx2gx=limx23x=32=1.

Bài 5.12: Tính các giới hạn sau:

a) limx+12xx2+1;

b) limx+x2+x+2x.

Trả lời:

a) limx+12xx2+1=limx+1x21+1x2=2

b) limx+(x2+x+2x)=limx+x+2x2+x+2+x=limx+1+2x1+1x+2x2+1=12


Bài 5.13: Cho hàm số fx=2x1x2.

Tính limx2+fx và limx2fx.

Trả lời:

Ta có: fx=2x1x2=2x11x2

+) limx2+2x1=221=2>0 và limx2+1x2=+ (do x – 2 > 0 khi x > 2).

Áp dụng quy tắc tìm giới hạn của tích, ta được limx2+fx=limx2+2x1x2=+.

+) limx22x1=221=2>0 và limx21x2= (do x – 2 < 0 khi x < 2).

Áp dụng quy tắc tìm giới hạn của tích, ta được limx2fx=limx22x1x2=.