Mở đầu: Một người lái xe từ địa điểm A đến địa điểm B trong thời gian 3 giờ. Biết quãng đường từ A đến B dài 180 km. Chứng tỏ rằng có ít nhất một thời điểm trên hành trình, xe chạy với vận tốc 60 km/h.
Trả lời:
Theo giả thiết, vận tốc trung bình của xe là va = = 60(km/h).
Gọi v(t) là hàm biểu thị vận tốc của xe tại thời điểm t.
Tại thời điểm xuất phát t0, vận tốc của xe v(t0) = 0 nên có một thời điểm t1 xe chạy với vận tốc v(t1) > va.
Xét hàm số f(t) = v(t) – va, rõ ràng f(t) là hàm số liên tục trên đoạn [t0; t1].
Hơn nữa, ta có f(t0) = – va < 0, f(t1) = v(t1) – va > 0 (do v(t1) > va), nên tồn tại thời điểm t* thuộc khoảng (t0; t1) sao cho f(t*) = 0. Khi đó ta có v(t*) – va = 0 hay v(t*) = va = 60.
1. Hàm số liên tục tại một điểm
Hoạt động 1: Nhận biết tính liên tục của hàm số tại một điểm
Cho hàm số
Tìm giới hạn và so sánh giá trị này với f(1).
Trả lời:
f(1) = 2
Suy ra
Luyện tập 1: Xét tính liên tục của hàm số tại điểm x0 = 0.
Trả lời:
Hàm số f(x) xác định trên ℝ, do đó x0 = 0 thuộc tập xác định của hàm số.
Ta có: ; .
Do đó, , suy ra .
Lại có f(0) = 0 nên . Vậy hàm số f(x) liên tục tại x0 = 0.
2. Hàm số liên tục trên một khoảng
Hoạt động 2: Cho hai hàm số
Xét tính liên tục của các hàm số f(x) và g(x) tại điểm
Trả lời:
Vậy f(x) liên tục tại
Vậy g(x) gián đoạn tại
Đồ thị f(x) liên tục trên đoạn [0,1], đồ thị g(x) bị gián đoạn tại
Luyện tập 2: Tìm các khoảng trên đó hàm số liên tục.
Trả lời:
Biểu thức có nghĩa khi x + 2 ≠ 0 hay x ≠ – 2.
Do đó, tập xác định của hàm số f(x) là (–∞; – 2) ∪ (– 2; +∞).
Vậy hàm số f(x) liên tục trên các khoảng (–∞; – 2) và (– 2; +∞).
3. Một số tính chất cơ bản
Hoạt động 3: Cho hai hàm số f(x) = x2 và g(x) = – x + 1.
a) Xét tính liên tục của hai hàm số trên tại x = 1.
b) Tính và so sánh L với f(1) + g(1).
Trả lời:
a) Hàm số f(x) = x2 và g(x) = – x + 1 là các hàm đa thức nên nó liên tục trên ℝ.
Do đó, hai hàm số f(x) và g(x) đều liên tục tại x = 1.
b) f(1)+g(1)=1+0=1
Vận dụng: Giải bài toán ở tình huống mở đầu.
Trả lời:
Theo giả thiết, vận tốc trung bình của xe là va = = 60 (km/h).
Gọi v(t) là hàm biểu thị vận tốc của xe tại thời điểm t.
Tại thời điểm xuất phát t0, vận tốc của xe v(t0) = 0 nên có một thời điểm t1 xe chạy với vận tốc v(t1) > va.
Xét hàm số f(t) = v(t) – va, rõ ràng f(t) là hàm số liên tục trên đoạn [t0; t1].
Hơn nữa, ta có f(t0) = – va < 0, f(t1) = v(t1) – va > 0 (do v(t1) > va), nên tồn tại thời điểm t* thuộc khoảng (t0; t1) sao cho f(t*) = 0. Khi đó ta có v(t*) – va = 0 hay v(t*) = va = 60.
Vậy có ít nhất một thời điểm trên hành trình, xe chạy với vận tốc 60 km/h.
Bài tập
Bài 5.14: Cho f(x) và g(x) là các hàm số liên tục tại x = 1. Biết f(1) = 2 và . Tính g(1).
Trả lời:
Vì f(x) và g(x) liên tục tại x = 1 suy ra
=> Suy ra g(1)=1
Bài 5.15: Xét tính liên tục của các hàm số sau trên tập xác định của chúng:
a) ;
b)
Trả lời:
a)
Biểu thức có nghĩa khi x2 + 5x + 6 ≠ 0 ⇔ (x + 2)(x + 3) ≠ 0
Do đó, tập xác định của hàm số f(x) là ℝ \ {– 3; – 2} = (–∞; – 3) ∪ (– 3; – 2) ∪ (– 2; +∞).
Vì f(x) là hàm phân thức hữu tỉ nên nó liên tục trên tập xác định.
Vậy hàm số f(x) liên tục trên các khoảng (–∞; – 3), (– 3; – 2) và (– 2; +∞).
b)
Tập xác định của hàm số là ℝ.
+) Nếu x < 1, thì f(x) = 1 + x2.
Đây là hàm đa thức nên có tập xác định là ℝ.
Vậy nó liên tục trên (–∞; 1).
+) Nếu x > 1, thì f(x) = 4 – x.
Đây là hàm đa thức nên có tập xác định là ℝ.
Vậy nó liên tục trên (1; +∞).
+) Ta có: ;
.
Suy ra , do đó không tồn tại giới hạn của f(x) tại x = 1.
Khi đó, hàm số f(x) không liên tục tại x = 1.
Vậy hàm số đã cho liên tục trên các khoảng (–∞; 1), (1; +∞) và gián đoạn tại x = 1.
Bài 5.16: Tìm giá trị của tham số m để hàm số
Trả lời:
Ta có:
Để hàm số liên tục trên R thì
Bài 5.17: Một bảng giá cước taxi được cho như sau:
a) Viết công thức hàm số mô tả số tiền khách phải trả theo quãng đường di chuyển.
b) Xét tính liên tục của hàm số ở câu a.
Trả lời:
a) Gọi x (km, x > 0) là quãng đường khách di chuyển và y (đồng) là số tiền khách phải trả theo quãng đường di chuyển x.
Với x ≤ 0,5, ta có y = 10 000.
Với 0,5 < x ≤ 30, ta có: y = 10 000 + 13 500(x – 0,5) hay y = 13 500x + 3 250.
Với x > 30, ta có: y = 10 000 + 13 500 . 29,5 + 11 000(x – 30) hay y = 11 000x + 78 250.
Vậy công thức hàm số mô tả số tiền khách phải trả theo quãng đường di chuyển là
b) +) Với 0 < x < 0,5 thì y = 10 000 là hàm hằng nên nó liên tục trên (0; 0,5).
+) Với 0,5 < x < 30 thì y = 13500x + 3 250 là hàm đa thức nên nó liên tục trên (0,5; 30).
+) Với x > 30 thì y = 11 000x + 78 250 là hàm đa thức nên nó liên tục trên (30; +∞).
+) Ta xét tính liên tục của hàm số tại x = 0,5 và x = 30.
- Tại x = 0,5, ta có y(0,5) = 10 000;
;
= 13 500 . 0,5 + 3 250 = 10 000.
Do đó, nên hàm số liên tục tại x = 0,5.
- Tại x = 30, ta có: y(30) = 13 500 . 30 + 3 250 = 408 250;
= 13 500 . 30 + 3 250 = 408 250;
= 11 000 . 30 + 78 250 = 408 250.
Do đó, nên hàm số liên tục tại x = 30.
Vậy hàm số ở câu a liên tục trên (0; +∞).