Giải SGK Toán 11 Kết nối tri thức Bài 7: Cấp số nhân

Mở đầu: Một công ty tuyển một chuyên gia về công nghệ thông tin với mức lương năm đầu là 240 triệu đồng và cam kết sẽ tăng thêm 5% lương mỗi năm so với năm liền trước đó. Tính tổng số lương mà chuyên gia đó nhận được sau khi làm việc cho công ty 10 năm (làm tròn đến triệu đồng).

Trả lời:

Lương hằng năm (triệu đồng) của chuyên gia lập thành một cấp số nhân, với số hạng đầu u1 = 240 và công bội q = 1,05. Tổng số lương của chuyên gia đó sau 10 năm chính là tổng của 10 số hạng đầu của cấp số nhân này và bằng

S10=u11q101q=24011,051011,053019.

Vậy tổng số lương (làm tròn đến triệu đồng) của chuyên gia đó sau 10 năm là 3 019 triệu đồng hay 3,019 tỉ đồng.

1. Định nghĩa

Hoạt động 1: Nhận biết cấp số nhân

Cho dãy số (un) với un = 3 . 2n.

a) Viết năm số hạng đầu của dãy số này.

b) Dự đoán hệ thức truy hồi liên hệ giữa un và un – 1.

Trả lời:

a) u1=6;u2=12;u3=24;u4=48;u5=96

b) un=un1×q với n ≥ 2.


Câu hỏi: Dãy số không đổi a, a, a, ... có phải là một cấp số nhân không?

Trả lời:

Dãy số không đổi a, a, a, ... là một cấp số nhân với công bội q = 1.

Luyện tập 1: Cho dãy số (un) với un=2×5n. Chứng minh rằng dãy số này là một cấp số nhân. Xác định số hạng đầu và công bội của nó.

Trả lời:

Ta có unun1=2×5n2×5n1=51=5x2 tức là un=5un1

Vậy (un) là một cấp số nhân với u1=10 và công bội q = 5


2. Số hạng tổng quát


Hoạt động 2: Công thức số hạng tổng quát của cấp số nhân

Cho cấp số nhân (un) với số hạng đầu u1 và công bội q

a) Tính các số hạng u2,u3,u4,u5 theo u1 và q

b) Dự đoán công thức tính số hạng thứ n theo u1 và q

Trả lời:

a) u2=u1q;u3=u2q;u4=u3q;u5=u4q

b) un=u1×qn1


Luyện tập 2: Trong một lọ nuôi cấy vi khuẩn, ban đầu có 5 000 con vi khuẩn và số lượng vi khuẩn tăng lên thêm 8% mỗi giờ. Hỏi sau 5 giờ thì số lượng vi khuẩn là bao nhiêu?

Trả lời:

Vì ban đầu có 5 000 con vi khuẩn và số lượng vi khuẩn tăng lên thêm 8% mỗi giờ nên số lượng vi khuẩn sau mỗi giờ lập thành một cấp số nhân với sống hạng đầu u1 = 5 000 và công bội q = 1,08 và u6 là số lượng vi khuẩn nhận được sau 5 giờ nuôi cấy.

Ta có: u6 = u1 . q6 – 1 = 5 000 . 1,085 ≈ 7 347.

Vậy sau 5 giờ thì số lượng vi khuẩn xấp xỉ khoảng 7 347 con.

3. Tổng của n số hạng đầu của một cấp số nhân

Hoạt động 3: Xây dựng công thức tính tổng n số hạng đầu của cấp số nhân

Cho cấp số nhân (un) với số hạng đầu u1 = a và công bội q ≠ 1.

Để tính tổng của n số hạng đầu

n = u1 + u+ ... + un – 1 + un,

thực hiện lần lượt các yêu cầu sau:

a) Biểu diễn mỗi số hạng trong tổng trên theo u1 và q để được biểu thức tính tổng Sn chỉ chứa u1 và q.

b) Từ kết quả phần a, nhân cả hai vế với q để được biểu thức tính tích q . Sn chỉ chứa u1 và q.

c) Trừ từng vế hai đẳng thức nhận được ở a và b và giản ước các số hạng đồng dạng để tính (1 – q)Sn theo u1 và q. Từ đó suy ra công thức tính Sn.

Trả lời:

a) Ta có: u2 = u1 . q; ...; un – 1 = u1 . q(n – 1) – 1 = u1 . qn – 2; un = u1 . qn – 1.

Do đó, Sn = u1 + u+ ... + un – 1 + un = u1 + u1 . q + ... + u1 . qn – 2 + u1 . qn – 1 (1).

b) Ta có: q . Sn = q . (u1 + u1 . q + ... + u1 . qn – 2 + u1 . qn – 1)

⇔ q . Sn = u1 . q + u1 . q2 + ... + u1 . qn – 1 + u1 . qn (2).

c) Lấy (1) trừ vế theo vế cho (2) ta được:

Sn – q . Sn = (u1 + u1 . q + ... + u1 . qn – 2 + u1 . qn – 1) – (u1 . q + u1 . q2 + ... + u1 . qn – 1 + u1 . qn)

⇔ (1 – q)Sn = u1 – u1 . qn

⇔ (1 – q)Sn = u1(1 – qn)

⇒ Sn = u11qn1q (với q ≠ 1).

Câu hỏi: Nếu cấp số nhân có công bội q = 1 thì tổng n số hạng đầu Sn của nó bằng bao nhiêu?

Trả lời:

Nếu cấp số nhân có công bội q = 1 thì cấp số nhân là u1, u1, ..., u1,... Khi đó

Sn = u1 + u1 + ... + u1 = n . u1 (tổng của n số hạng u1).

Vận dụng: Một nhà máy tuyển thêm công nhân vào làm việc trong thời hạn ba năm và đưa ra hai phương án lựa chọn về lương như sau:

- Phương án 1: Lương tháng khởi điểm là 5 triệu đồng và sau mỗi quý, lương tháng sẽ tăng thêm 500 nghìn đồng.

- Phương án 2: Lương tháng khởi điểm là 5 triệu đồng và sau mỗi quý, lương tháng sẽ tăng thêm 5%.

Với phương án nào thì tổng lương nhận được sau ba năm làm việc của người công nhân sẽ lớn hơn?

Trả lời:

Theo phương án 1, tiền lương mỗi quý sẽ tạo thành cấp số nhân với u1=5×3=15, công sai d = 0.5 x 3 = 1.5

Công thức tổng quát là: un=15+1.5(n1)

Sau 3 năm làm việc (tương ứng với 12 quý) lương của người nông dân là: 122[2×15+(121)×1.5]=279 (triệu đồng)

Theo phương án 2, tiền lương mỗi quý sẽ tạo thành cấp số nhân với u1 = 5 x 3 = 15, công bội q = 1.05

Công thức tổng quát là: un=15×1.05n1

Sau 3 năm làm việc lương của người nông dân là: 15(11.0512)11.05=238.757 (triệu đồng)

Vậy theo phương án 1 thì tổng lương nhận được của người nông dân là cao hơn.


Bài tập


Bài 2.15: Xác định công bội, số hạng thứ 5, số hạng tổng quát và số hạng thứ 100 của mỗi cấp số nhân sau:

a) 1, 4, 16, ...;

b) 2, 12,18 , ....

Trả lời:

a) Cấp số nhân đã cho có số hạng đầu u1 = 1 và công bội là q = 4 : 1 = 4.

Số hạng thứ 5 là u5 = u1 . q5 – 1 = 1 . 44 = 256.

Số hạng tổng quát là un = u1 . qn – 1 = 1 . 4n – 1 = 4n – 1.

Số hạng thứ 100 là u100 = 4100 – 1 = 499.

b) Cấp số nhân đã cho có số hạng đầu u1 = 2 và công bội là q = 12:2=14 .

Số hạng thứ 5 là u5 = u1 . q5 – 1 = 2 . 144 = 1128 .

Số hạng tổng quát là un = u1 . qn – 1 = 2 .14n1 .

Số hạng thứ 100 là u100 = 2 . 141001 = 2.199499=222.99=22198=12197 .

Bài 2.16: Viết năm số hạng đầu của mỗi dãy số (un) sau và xem nó có phải là cấp số nhân không. Nếu nó là cấp số nhân, hãy tìm công bội q và viết công thức tính số hạng tổng quát của nó dưới dạng un = u1 . qn – 1.

a) un = 5n;

b) un = 5n;

c) u1 = 1, un = nun – 1;

d) u1 = 1, un = 5un – 1.

Trả lời:

a) Năm số hạng đầu của dãy: 5; 10; 15; 20; 25

Ta có: 10:5=215:10=32 suy ra (un) không phải cấp số nhân

b) Năm số hạng đầu của dãy: 5; 25; 125; 625; 3125

Ta có un=5n nên un+1=5n+1un+1un=5n+15n=5(n2)

Do đó (un) là cấp số nhân có công bội q = 5

Số hạng tổng quát: un=5×5n1=5n

c) Năm số hạng đầu của dãy: 1; 2; 6; 24; 120

Ta có: 2:1=26:2=3 nên (un) không phải là cấp số nhân

d) Năm số hạng đầu của dãy: 1; 5; 25; 125; 625

Ta có: un=5un1 nên unun1=5(n2)

Do đó (un) là cấp số nhân với cong sai q = 5

Số hạng tổng quát: un=5n1


Bài 2.17: Một cấp số nhân có số hạng thứ 6 bằng 96 và số hạng thứ 3 bằng 12. Tìm số hạng thứ 50 của cấp số nhân này.

Trả lời:

Giả sử cấp số nhân có số hạng đầu u1 và công bội q. Khi đó theo bài ra ta có:

u6 = u1 . q6 – 1 = u1 . q5 = 96 và u3 = u1 . q3 – 1 = u1 . q2 = 12.

Do đó, u6u3=u1.q5u1.q2=q3=9612=8 ⇒ q = 2, thay vào u1 . q2 = 12 ta được

u1 . 22 = 12 ⇒ u1 = 3.

Vậy số hạng thứ 50 của cấp số nhân là u50 = u1 . q50 – 1 = 3 . 250 – 1 = 3 . 249.

Bài 2.18: Một cấp số nhân có số hạng đầu bằng 5 và công bội bằng 2. Hỏi phải lấy tổng của bao nhiêu số hạng đầu của cấp số nhân này để có tổng bằng 5 115?

Trả lời:

Ta có số hạng tổng quát của dãy là un=5×2n1 

Gọi n là số các số hạng cần lấy tổng:

5115=Sn=5(12n)12=5+5×2n2n=1024n=10

Vậy số các số hạng cần lấy tổng là 10


Bài 2.19: Một công ty xây dựng mua một chiếc máy ủi với giá 3 tỉ đồng. Cứ sau mỗi năm sử dụng, giá trị của chiếc máy ủi này lại giảm 20% so với giá trị của nó trong năm liền trước đó. Tìm giá trị còn lại của chiếc máy ủi đó sau 5 năm sử dụng.

Trả lời:

Cứ sau mỗi năm sử dụng, giá trị của chiếc máy ủi giảm 20% so với giá trị của nó trong năm liền trước đó, tức là giá trị của chiếc máy ủi năm sau thì bằng 80% giá trị của chiếc máy ủi so với năm liền trước đó.

Giá trị của chiếc máy ủi sau 1 năm sử dụng là 3 . 0,8 = 2,4 (tỉ đồng).

Giá trị của chiếc máy ủi sau mỗi năm sử dụng lập thành một cấp số nhân với số hạng đầu u1 = 2,4 và công bội q = 0,8.

Vậy giá trị còn lại của chiếc máy ủi sau 5 năm sử dụng là

u5 = u1 . q5 – 1 = 2,4 . 0,84 = 0,98304 (tỉ đồng) = 983 040 000 (đồng).

Bài 2.20: Vào năm 2020, dân số của một quốc gia là khoảng 97 triệu người và tốc độ tăng trưởng dân số là 0,91%. Nếu tốc độ tăng trưởng dân số này được giữ nguyên hằng năm, hãy ước tính dân số của quốc gia đó vào năm 2030.

Trả lời:

Dân số hằng năm lập thành cấp số nhân với số hạng đầu là 97 và công bội q= 1.0091

Dân số của quốc gia đó năm 2030 (tức n = 11) là u11=97×1.0091111=106.197 (triệu người)


Bài 2.21: Một loại thuốc được dùng mỗi ngày một lần. Lúc đầu nồng độ thuốc trong máu của bệnh nhân tăng nhanh, nhưng mỗi liều tiếp có tác dụng ít hơn liều trước đó. Lượng thuốc trong máu ở ngày thứ nhất là 50 mg, và mỗi ngày sau đó giảm chỉ còn một nửa so với ngày kề trước đó. Tính tổng lượng thuốc (tính bằng mg) trong máu của bệnh nhân sau khi dùng thuốc 10 ngày liên tiếp.

Trả lời:

Lượng thuốc (tính bằng mg) trong máu của bệnh nhân sau mỗi ngày dùng thuốc lập thành một cấp số nhân với số hạng đầu u1 = 50 và công bội q = 12 .

Tổng lượng thuốc (tính bằng mg) trong máu của bệnh nhân sau khi dùng thuốc 10 ngày liên tiếp chính bằng tổng của 10 số hạng đầu của cấp số nhân trên và là

S10=u11q101q=5011210112=25575256 (mg).