Giải SGK Toán 11 Kết nối tri thức Bài tập cuối chương I

A. Trắc nghiệm

Bài 1.23: Biểu diễn các góc lượng giác α=5π6β=π3γ=25π3δ=17π6 trên đường tròn lượng giác. Các góc nào có điểm biểu diễn trùng nhau?

A. β và γ.

B. α, β, γ.

C. β, γ, δ.

D. α và β.

Đáp án: A

* Giải thích:

+ Ta biểu diễn các góc lượng giác α=5π6β=π3 , γ=25π3δ=17π6 trên cùng một đường tròn lượng giác, nhận thấy hai góc β và γ có điểm biểu diễn trùng nhau.

Bài 1.24: Trong các khẳng định sau, khẳng định nào là sai?

A. sin(π – α) = sin α.

B. cos(π – α) = cos α.

C. sin(π + α) = – sin α.

D. cos(π + α) = – cos α.

Đáp án: B

* Giải thích:

Vì π – α và α là hai góc bù nhau nên sin(π – α) = sin α; cos(π – α) = – cos α. Do đó đáp án A đúng và đáp án B sai.

Ta có góc π + α và α là hai góc hơn kém nhau 1 π nên sin(π + α) = – sin α, cos(π + α) = – cos α. Do đó đáp án C và D đều đúng.

Bài 1.25: Trong các khẳng định sau, khẳng định nào là sai?

A. cos(a – b) = cos a cos b – sin a sin b.

B. sin(a – b) = sin a cos b – cos a sin b.

C. cos(a + b) = cos a cos b – sin a sin b.

D. sin(a + b) = sin a cos b + cos a sin b.

Đáp án: A

* Giải thích:

Ta có các công thức cộng:

cos(a – b) = cos a cos b + sin a sin b

sin(a – b) = sin a cos b – cos a sin b

cos(a + b) = cos a cos b – sin a sin b

sin(a + b) = sin a cos b + cos a sin b

Vậy đáp án A sai.

Bài 1.26: Rút gọn biểu thức M = cos(a + b) cos(a – b) – sin(a + b) sin(a – b), ta được:

A. M = sin 4a.

B. M = 1 – 2 cos2 a.

C. M = 1 – 2 sin2 a.

D. M = cos 4a.

Đáp án: C

* Giải thích:

Ta có: M = cos(a + b) cos(a – b) – sin(a + b) sin(a – b)

= cos[(a + b) + (a – b)]            (áp dụng công thức cộng)

= cos 2a = 2cos2 a – 1 = 1 – 2 sin2 a    (áp dụng công thức nhân đôi)

Bài 1.27: Khẳng định nào sau đây là sai?

A. Hàm số y = cos x có tập xác định là ℝ.

B. Hàm số y = cos x có tập giá trị là [– 1; 1].

C. Hàm số y = cos x là hàm số lẻ.

D. Hàm số y = cos x tuần hoàn với chu kì 2π.

Đáp án: C

* Giải thích:

Hàm số y = cos x:

- Có tập xác định là ℝ và tập giá trị là [– 1; 1];

- Là hàm số chẵn và tuần hoàn với chu kì 2π.

Bài 1.28: Trong các hàm số sau đây, hàm số nào là hàm tuần hoàn?

A. y = tan x + x.

B. y = x2 + 1.

C. y = cot x.

D. y = sinxx.

Đáp án: C

* Giải thích:

Hàm số y = cot x tuần hoàn với chu kì π.

Bài 1.29: Đồ thị của các hàm số y = sin x và y = cos x cắt nhau tại bao nhiêu điểm có hoành độ thuộc đoạn [2π;5π2]?

A. 5.

B. 6.

C. 4.

D. 7.

Đáp án: A. 

* Giải thích:

Hoành độ giao điểm của hai đồ thị hàm số y = sin x và y = cos x là nghiệm của phương trình sin x = cos x ⇔ tan x = 1 (do tanx=sinxcosx)x=π4+kπ+kπ,kZ

Ta có: 2ππ4+kπ5π29π4kπ9π42.25k2.25

Mà k ∈ ℤ nên k ∈ {– 2; – 1; 0; 1; 2}.

Vậy đồ thị của các hàm số y = sin x và y = cos x cắt nhau tại 5 điểm có hoành độ thuộc đoạn [2π;5π2]

Bài 1.30: Tập xác định của hàm số y=cosxsinx1  là

A. ℝ \ {k2π, k ∈ ℤ}.

B. R\{π2+k2π,kZ}

C. R\{π2+kπ,kZ}

D. ℝ \ {kπ, k ∈ ℤ}.

Đáp án: B. 

* Giải thích:

Biểu thức y=cosxsinx1 có nghĩa khi sin x – 1 ≠ 0 ⇔ sin x ≠ 1 ⇔ xπ2+k2π,kZ

Vậy tập xác định của hàm số đã cho là D = R\{π2+k2π,kZ}

B. Tự luận

Bài 1.31: Cho góc α thỏa mãn π2<α<π,cosα=13.Tính giá trị của các biểu thức sau:

a) sin(α+π6)

b) cos(α+π6)

c) sin(απ3)

d) cos(απ6)

Trả lời:

Vì π2<α<π nên sin α > 0. Mặt khác từ sin2α+cos2α=1 suy ra sinα=1có2α=1(13)2=63

a) sin(α+π6)=sinαcosπ6+cosαsinπ6=63×32+(13)×12=3236

b) cos(α+π6)=cosαcosπ6sinαsinπ6=13×3263×12=366

c) sin(απ3)=sinαcosπ3cosαsinπ3=63×12(13)×32=6+36

d) cos(απ6)=cosαcosπ6+sinαsinπ6=13×32+63×12=3+66

Bài 1.32: Chứng minh các đẳng thức sau:

a) (sin α + cos α)2 = 1 + sin 2α;

b) cos4 α – sin4 α = cos 2α.

Trả lời:

a) Áp dụng hệ thức lượng giác cơ bản: sin2 α + cos2 α = 1

và công thức nhân đôi: sin 2α = 2sin α cos α.

Ta có: VT = (sin α + cos α)2 = sin2 α + cos2 α + 2sin α cos α = 1 + sin 2α = VP (đpcm).

b) Áp dụng hệ thức lượng giác cơ bản: sin2 α + cos2 α = 1

và công thức nhân đôi: cos 2α = cos2 α – sin2 α.

Ta có: VT = cos4 α – sin4 α = (cos2 α)2 – (sin2 α)2

= (cos2 α + sin2 α)(cos2 α – sin2 α) = 1 . cos 2α = cos 2α = VP (đpcm).

Bài 1.33: Tìm tập giá trị của các hàm số sau:

a) y=2cos(2xπ3)1

b) y = sinx + cosx

Trả lời:

a) Ta có: 1cos(2xπ3)1 với mọi xR

22cos(2xπ3)2 với mọi xR

212cos(2xπ3)121 với mọi xR

32cos(2xπ3)11 với mọi xR

3y1 với mọi xR

Vậy tập giá trị của hàm số y=2cos(2xπ3)1 là [-3;1]

b) Ta có: sinx+cosx=2(12sinx+12cosx)

=2(cosπ4sinx+sinπ4cosx)=2(sinxcosπ4+cosxsinπ4)=2sin(x+π4)

Khi đó ta có hàm số y=2sin(x+π4)

Lại có: 1sin(x+π4)1 với mọi xR

22sin(x+π4)2 với mọi xR

2y2 với mọi xR

Vậy tập giá trị của hàm số y = sin x + cos x là 2;2 .


Bài 1.34: Giải các phương trình sau:

a) cos3xπ4=22 ;

b) 2sin2 x – 1 + cos 3x = 0;

c) tan2x+π5=tanxπ6.

Trả lời:

a) cos3xπ4=22

cos3xπ4=cos3π4

3xπ4=3π4+k2π3xπ4=3π4+k2πk

3x=π+k2π3x=π2+k2πk

x=π3+k2π3x=π6+k2π3k

Vậy phương trình đã cho có các nghiệm là x=π3+k2π3,k  và x=π6+k2π3,k .

b) 2sin2 x – 1 + cos 3x = 0

⇔ – (1 – 2sin2 x) + cos 3x = 0

⇔ – cos 2x + cos 3x = 0

⇔ cos 3x = cos 2x

3x=2x+k2π3x=2x+k2πk

x=k2π5x=k2πk

x=k2πx=k2π5k

Vậy phương trình đã cho có các nghiệm là x=k2π,k và x=k2π5,k .

c) tan2x+π5=tanxπ6

2x+π5=xπ6+kπ,  k

x=11π30+kπ,  k

Vậy phương trình đã cho có các nghiệm là x=11π30+kπ,  k .

Bài 1.35: Huyết áp là áp lực cần thiết tác động lên thành của động mạch để đưa máu từ tim đến nuôi dưỡng các mô trong cơ thể. Huyết áp được tạo ra do lực co bóp của cơ tim và sức cản của thành động mạch. Mỗi lần tim đập, huyết áp của chúng ta tăng rồi giảm giữa các nhịp. Huyết áp tối đa và huyết áp tối thiểu được gọi tương ứng là huyết áp tâm thu và tâm trương. Chỉ số huyết áp của chúng ta được viết là huyết áp tâm thu/huyết áp tâm trương. Chỉ số huyết áp 120/80 là bình thường. Giả sử huyết áp của một người nào đó được mô hình hóa bởi hàm số

p(t) = 115 + 25sin(160πt),

trong đó p(t) là huyết áp tính theo đơn vị mmHg (milimét thủy ngân) và thời gian t tính theo phút.

a) Tìm chu kì của hàm số p(t).

b) Tìm số nhịp tim mỗi phút.

c) Tìm chỉ số huyết áp. So sánh huyết áp của người này với huyết áp bình thường.

Trả lời:

a) Chu kì của hàm số p(t) là T=2π160π=180

b) Thời gian giữa hai lần tim đập là T=180 (phút)

Số nhịp tim mỗi phút là 1:180=80 nhịp.

c) Ta có: – 1 ≤ sin(160πt) ≤ 1 với mọi t ∈ ℝ

⇔ – 25 ≤ 25sin(160πt) ≤ 25 với mọi t ∈ ℝ

⇔ 115 + (– 25) ≤ 115 + 25sin(160πt) ≤ 115 + 25  với mọi t ∈ ℝ

⇔ 90 ≤ p(t) ≤ 140 với mọi t ∈ ℝ

Do đó, chỉ số huyết áp của người này là 140/90 và chỉ số huyết áp của người này cao hơn mức bình thường.


Bài 1.36: Khi một tia sáng truyền từ không khí vào mặt nước thì một phần tia sáng bị phản xạ trên bề mặt, phần còn lại bị khúc xạ như trong Hình 1.26. Góc tới i liên hệ với góc khúc xạ r bởi Định luật khúc xạ ánh sáng

sinisinr=n2n1.

Ở đây, n1 và n2 tương ứng là chiết suất của môi trường 1 (không khí) và môi trường 2 (nước). Cho biết góc tới i = 50°, hãy tính góc khúc xạ, biết rằng chiết suất của không khí bằng 1 còn chiết suất của nước là 1,33.

.

Bài 1.36 trang 41 Toán 11 Tập 1 | Kết nối tri thức Giải Toán 11

Trả lời:

Theo bài ra ta có: i = 50°, n1 = 1, n2 = 1,33, thay vào sinisinr=n2n1  ta được:

sin50°sinr=1,331 (điều kiện sin r ≠ 0)

⇒ sin r = sin50°1,33

⇔ sin r ≈ 0,57597 (thỏa mãn điều kiện)

⇔ sin r ≈ sin(35°10’)

r35°10'+k360°r180°35°10'+k360°k

r35°10'+k360°r144°50'+k360°k

Mà 0° < r < 90° nên r ≈ 35°10’.

Vậy góc khúc xạ r ≈ 35°10’.