Khởi động: Quan sát hình chụp các mái nhà ở phố cổ Hội An, em thấy các cạnh đối của tứ giác ABCD có gì đặc biệt?
Lời giải:
Quan sát hình chụp các mái nhà ở phố cổ Hội An, ta thấy các cạnh đối của tứ giác ABCD vừa song song vừa bằng nhau (AB // DC, AB = DC và AD // BC, AD = BC).
1. Hình bình hành
Khám phá 1: Hình 1a là hình ảnh của một thước vẽ truyền dùng để phóng to hay thu nhỏ một hình vẽ có sẵn. Dùng thước đo góc để đo số đo của các cặp góc và , và của tứ giác ABCD (Hình 1b) rồi rút ra nhận xét về mối quan hệ giữa các cặp cạnh AB và CD; AD và BC.
Lời giải:
Khám phá 2: Cho tứ giác ABCD có các cạnh đối song song. Gọi O là giao điểm của hai đường chéo. Hãy chứng tỏ:
‒ Tam giác ABC bằng tam giác CDA.
‒ Tam giác OAB bằng tam giác OCD.
Lời giải:
• Tứ giác ABCD có AB // DC và AD // BC.
Từ AB // DC suy ra (so le trong) và (so le trong).
Từ AD // BC suy ra (so le trong).
Xét DABC và DCDA có:
; AC là cạnh chung;
Do đó DABC = DCDA (g.c.g).
• Do DABC = DCDA nên AB = CD (hai cạnh tương ứng).
Xét DOAB và DOCD có:
; AB = CD; (chứng minh trên)
Do đó DOAB = DOCD (g.c.g).
Thực hành 1: Cho hình bình hành PQRS với I là giao điểm của hai đường chéo (Hình 4). Hãy chỉ ra các đoạn thẳng bằng nhau và các góc bằng nhau có trong hình.
Lời giải:
Vận dụng 1: Mắt lưới của một lưới bóng chuyền có dạng hình tứ giác có các cạnh đối song song. Cho biết độ dài hai cạnh của tứ giác này là 4 cm và 5 cm. Tìm độ dài hai cạnh còn lại.
Lời giải:
- Mắt lướt bóng chuyền có các cạnh đối song song nên mắt lưới có dạng hình bình hành
- Vậy độ dài hai cạnh còn lại lần lượt bằng 4cm và 5cm
Vận dụng 2: Mặt trước của một công trình xây dựng được làm bằng kính có dạng hình bình hành EFGH với M là giao điểm của hai đường chéo (Hình 6). Cho biết EF = 40 m, EM = 36 m, HM = 16 m. Tính độ dài cạnh HG và độ dài hai đường chéo.
Lời giải:
EFGH là hình bình hành suy ra HG = EF = 40 m
EG = 2EM = 2 x 36 = 72 (m)
HF = 2HM = 2 x 16 =32 (m)
Khám phá 3: Cho tứ giác ABCD có P là giao điểm của hai đường chéo. Giải thích tại sao AB // CD và AD // BC trong mỗi trường hợp sau:
Trường hợp 1: AB = CD và AD = BC (Hình 7a).
Trường hợp 2: AB // CD và AB = CD (Hình 7b).
Trường hợp 3: AD // BC và AD = BC (Hình 7c).
Trường hợp 4: (Hình 7d).
Trường hợp 5: PA = PC, PB = PD (Hình 7e).
Lời giải:
• Hình 7a):
Xét DABC và DCDA có:
AB = CD; BC = DA; AC là cạnh chung
Do đó DABC = DCDA (c.c.c)
Suy ra và (các cặp góc tương ứng).
Vì và hai góc này ở vị trí so le trong nên AB // CD.
Vì và hai góc này ở vị trí so le trong nên AD // BC.
• Hình 7b):
Ta có và hai góc này ở vị trí so le trong nên AB // CD.
Xét DABC và DCDA có:
AC là cạnh chung; ; AB = CD
Do đó DABC = DCDA (c.g.c)
Suy ra (hai góc tương ứng).
Mà hai góc này ở vị trí so le trong nên AD // BC.
• Hình 7c):
Ta có: và hai góc này ở vị trí so le trong nên AD // BC.
Xét DABC và DCDA có:
AC là cạnh chung; ; BC = AD
Do đó DABC = DCDA (c.g.c)
Suy ra (hai góc tương ứng).
Mà hai góc này ở vị trí so le trong nên AB // CD.
• Hình 7d):
Xét tứ giác ABCD ta có (định lí tổng các góc của một tứ giác)
Mà nên ta có
Suy ra và
Do đó AD // BC và AB // CD.
• Hình 7e):
Xét DPAB và DPCD có:
PA = PC; (đối đỉnh); PB = PD
Do đó DPAB = DPCD (c.g.c)
Suy ra (hai góc tương ứng)
Hay , mà hai góc này ở vị trí so le trong nên AB // CD.
Tương tự ta cũng chứng minh được DPAD = DPCB (c.g.c)
Suy ra (hai góc tương ứng)
Hay , mà hai góc này ở vị trí so le trong nên AD // BC.
Thực hành 2: Trong các tứ giác ở Hình 9, tứ giác nào không là hình bình hành?
Lời giải:
a) Tứ giác ABCD có: AB = CD, BC = AD suy ra ABCD là hình bình hành
b) Tứ giác EFGH có:
Tứ giác IJKL có:
d) Tứ giác MNPQ có: OQ = ON, OM , OP suy ra MNPQ là hình bình hành
e) Tứ giác TSRU có:
g)
Tứ giác XYZV có: XY // VZ, XY = VZ suy ra XYZV là hình bình hành
Vận dụng 3: Quan sát Hình 10, cho biết ABCD và AKCH đều là hình bình hành. Chứng minh ba đoạn thẳng AC, BD và HK có cùng trung điểm O.
Lời giải:
2. Hình thoi
Khám phá 4: Hình 11a là hình chụp tấm lưới thép được đan thành nhiều mắt. Hình 11b là hình vẽ phóng to của một mắt lưới. Đo độ dài các cạnh của tứ giác ABCD và rút ra nhận xét.
Lời giải:
Dùng thước đo độ dài các AB, BC, CD, DA của tứ giác ABCD.
Nhận xét: AB = BC = CD = DA.
Khám phá 5:
a) Hình thoi có là hình bình hành không?
b) Cho hình thoi ABCD có O là giao điểm của hai đường chéo (Hình 13b). Các tam giác OAB, OCB, OCD, OAD có bằng nhau không?
Lời giải:
Thực hành 3: Cho hình thoi MNPQ có I là giao điểm của hai đường chéo.
a) Tính MP khi biết MN = 10 dm, IN = 6 dm.
b) Tính khi biết .
Lời giải:
Áo dụng định lí Pythagore cho tam giác MNI vuông tại I:
Do I là trung điểm của MP nên MP = 2MI = 2.8 = 16 (dm).
Vậy MP = 16 dm.
Vận dụng 4: Tính độ dài cạnh của các khuy áo hình thoi có độ dài hai đường chéo lần lượt là 3,2 cm và 2,4 cm.
Lời giải:
Hình ảnh chiếc khuy áo được vẽ lại bởi hình thoi ABCD như hình vẽ trên.
Gọi O là giao điểm của hai đường chéo AC và BD.
Khi đó hai đường chéo AC và BD vuông góc với nhau tại trung điểm O của mỗi đường.
Suy ra OA = AC = 1,6 cm và OB = BD = 1,2 cm.
Áp dụng định lí Pythagore vào DOAB vuông tại O, ta có:
AB2 = OA2 + OB2
Suy ra (cm).
Vậy độ dài cạnh của khuy áo là 2 cm.
Khám phá 6: Cho ABCD là một hình bình hành. Giải thích tại sao tứ giác ABCD có bốn cạnh bằng nhau trong mỗi trường hợp sau:
Trường hợp 1: AB = AD.
Trường hợp 2: AC vuông góc với BD.
Trường hợp 3: AC là đường phân giác góc BAD.
Trường hợp 4: BD là đường phân giác góc ABC.
Lời giải:
Vận dụng 5: Một hoa văn trang trí được ghép bởi ba hình tứ giác có độ dài mỗi cạnh đều bằng 2 cm (Hình 18). Gọi tên các tứ giác này và tính chu vi của hoa văn.
Lời giải:
Các tứ giác có độ dài mỗi cạn đều bằng nhau suy ra tứ giác là hình thoi
Chu vi hoa văn: 3 x 4 x 2 = 24 (cm)
Vận dụng 6: Một tứ giác có chu vi là 52 cm và một đường chéo là 24 cm. Tìm độ dài của mỗi cạnh và đường chéo còn lại nếu biết hai đường chéo vuông góc tại trung điểm của mỗi đường.
Lời giải:
Tứ giác ABCD có hai đường chéo vuông góc tại trung điểm của mỗi đường nên là hình thoi.
Độ dài cạnh của hình thoi ABCD là: 52 : 4 = 13 (cm).
Giả sử đường chéo AC = 24 cm và O là giao điểm hai đường chéo.
Ta có O là trung điểm của AC nên OA = AC = 12 cm.
Áp dụng định lí Pythagore vào DOAB vuông tại O, ta có:
AB2 = OA2 + OB2
Suy ra (cm).
Do O là trung điểm của BD nên BD = 2OB = 2.5 = 10 (cm).
Vậy hình thoi có độ dài cạnh là 13 cm và độ dài đường chéo còn lại là 10 cm.
Bài tập
Bài tập 1: Cần thêm một điều kiện gì để mỗi tứ giác trong Hình 19 trở thành hình bình hành?
Lời giải:
Bài tập 2: Cho hình bình hành ABCD, kẻ AH vuông góc với BD tại H và CK vuông góc với BD tại K (Hình 20).
a) Chứng minh tứ giác AHCK là hình bình hành.
b) Gọi I là trung điểm của HK. Chứng minh IB = ID.
Lời giải:
a) Do ABCD là hình bình hành nên AD // BC và AD = BC.
Do AD // BC nên (so le trong)
Xét DADH và DCBK có:
;
AD = BC (chứng minh trên);
(do ).
Do đó DADH = DCBK (cạnh huyền – góc nhọn).
Suy ra AH = CK (hai cạnh tương ứng).
Ta có AH ⊥ DB và CK ⊥ DB nên AH // CK.
Tứ giác AHCK có AH // CK và AH = CK nên AHCK là hình bình hành (dấu hiệu nhận biết).
b) Do AHCK là hình bình hành (câu a) nên hai đường chéo AC và HK cắt nhau tại trung điểm của mỗi đường.
Mà I là trung điểm của HK (giả thiết) nên I là trung điểm của AC.
Do ABCD là hình bình hành nên hai đường chéo AC và BD cắt nhau tại trung điểm của mỗi đường.
Mà I là trung điểm của AC nên I là trung điểm của BD, hay IB = ID.
Bài tập 3: Cho hình bình hành ABCD. Gọi E là trung điểm của AD, F là trung điểm của BC.
a) Chứng minh rằng tứ giác EBFD là hình bình hành.
b) Gọi O là giao điểm của hai đường chéo của hình bình hành ABCD. Chứng minh rằng ba điểm E, O, F thẳng hàng.
Lời giải:
a) Ta có :
ED=
BF=
Và AD=BC (ABCD là hình bình hành)
⇒ED=BF
Mà ED // BF (AD // BC, E∈AD;F∈BC)
Do đó tứ giác EBFD là hình bình hành.
b) O là tâm đối xứng của hình bình hành ABCD ⇒Olà trung điểm của BD
Hình bình hành EBFD có O là trung điểm của BD ⇒O là trung điểm của EF.
⇒O∈EF
Vậy E, O, F thẳng hàng.
Bài tập 4: Cho hình bình hành ABCD (AB > BC). Tia phân giác của góc D cắt AB tại E, tia phân giác của góc B cắt CD tại F.
a) Chứng minh DE // BF.
b) Tứ giác DEBF là hình gì?
Lời giải:
Bài tập 5: Cho hình bình hành ABCD. Gọi I và K lần lượt là trung điểm của các cạnh AB và CD; E và F lần lượt là giao điểm của AK và CI với BD.
a) Chứng minh tứ giác AEFI là hình thang.
b) Chứng minh DE = EF = FB.
Lời giải:
a) Do ABCD là hình bình hành nên AB = CD và AB // CD.
Vì I là trung điểm của AB nên .
Vì K là trung điểm của CD nên .
Do đó AI = CK.
Tứ giác AICK có AI // CK (do AB // CD) và AI = CK nên là hình bình hành (dấu hiệu nhận biết).
Suy ra AK // CI hay AE // IF.
Tứ giác AEFI có AE // IF nên là hình thang.
b) Gọi O là giao điểm của hai đường chéo hình bình hành ABCD.
Do đó O là trung điểm của AC và BD.
Xét DABC có BO, CI là hai đường trung tuyến của tam giác và BO, CI cắt nhau tại F nên F là trọng tâm của DABC.
Suy ra và .
Chứng minh tương tự đối với DACD ta cũng có E là trọng tâm của DACD.
Suy ra và .
Lại có O là trung điểm BD nên BO = DO.
Do đó và
Mặt khác .
Suy ra .
Vậy DE = EF = FB.
Bài tập 6: Quan sát Hình 21. Chứng minh rằng tứ giác EFGH là hình thoi.
Lời giải:
E, F lần lượt là trung điểm của AB và BC
⇒EF là đường trung bình của tam giác ABC
⇒EF//AC và EF=
H, G lần lượt là trung điểm của AD và DC
⇒HG là đường trung bình của tam giác ACD
⇒HG//ACvà HG=
Từ (1) và (2) ⇒EF//HGvà EF=HG
Vậy tứ giác EFGH là hình bình hành.
Tứ giác ABCD có AB=CDvà AD=BC⇒ Tứ giác ABCD là hình bình hành.
Bài tập 7: Cho hình thoi ABCD, hai đường chéo AC và BD cắt nhau tại O. Biết AC = 6 cm, BD = 8 cm. Tính độ dài cạnh của hình thoi ABCD.
Lời giải:
Bài tập 8: Cho tam giác ABC cân tại A, gọi M là trung điểm của BC. Lấy điểm D đối xứng với điểm A qua BC.
a) Chứng minh tứ giác ABDC là hình thoi.
b) Gọi E, F lần lượt là trung điểm của AB và AC, lấy điểm O sao cho E là trung điểm của OM. Chứng minh hai tam giác AOB và MBO vuông và bằng nhau.
c) Chứng minh tứ giác AEMF là hình thoi.
Lời giải:
a) Ta có D đối xứng với A qua BC nên M là trung điểm của AD và AD ⊥ BC.
Tứ giác ABDC có hai đường chéo AD và BD cắt nhau tại trung điểm của mỗi đường nên là hình bình hành.
Lại có hai đường chéo AD ⊥ BC nên hình bình hành ABDC là hình thoi.
b) Ta có E là trung điểm của AB và OM nên hai đường chéo của tứ giác OAMB cắt nhau tại trung điểm của mỗi đường.
Do đó tứ giác OAMB là hình bình hành.
Suy ra OA // BM và OB // AM.
Ta có OB // AM và AM ⊥ BM nên OB ⊥ BM, do đó DMBO vuông tại B.
Ta có OA // BM và OB ⊥ BM nên OA ⊥ OB, do đó DAOB vuông tại O.
Do OAMB là hình bình hành nên OA = BM và OB = AM.
Xét DMBO vuông tại B và DAOB vuông tại O có:
OB = AM; BM = OA
Do đó DMBO = DAOB (hai cạnh góc vuông).
Bài tập 9: Tìm các hình bình hành và hình thang có trong Hình 22.
Lời giải:
Các hình bình hành: ABGH, AEIL, CDFG
Các hình thang: ABGH, ACGH, ADFH, AEFH, BDFG, CEFG, AEIK, AEIL, CDFG, BEFG