Giải SGK Toán 8 Chân trời sáng tạo Bài 5: Phân thức đại số

Khởi động: Một ô tô đi được quãng đường s (km) với tốc độ v (km/h) hết thời gian t (giờ). Hãy lập các biểu thức tính một trong ba đại lượng s, v và t theo hai đại lượng còn lại. Có phải tất cả các biểu thức đó đều là đa thức? Hãy giải thích.

Lời giải:


1. Phân thức đại số

Khám phá 1: 

a) Viết biểu thức biểu thị các đại lượng sau đây:

• Chiều rộng của hình chữ nhật có chiều dài bằng a (m) và diện tích bằng 3 m2.

• Thời gian để một người thợ làm được x sản phẩm, biết rằng mỗi giờ người thợ đó làm được y sản phẩm.

• Năng suất trung bình của một mảnh ruộng gồm hai thửa, một thửa có diện tích a (ha) cho thu hoạch được m tấn lúa, thửa kia có diện tích b (ha) cho thu hoạch n tấn lúa.

b) Các biểu thức trên có đặc điểm nào giống nhau? Chúng có phải là đa thức không?

Lời giải:

a)

• Biểu thức biểu thị chiều rộng của hình chữ nhật có chiều dài bằng a (m) và diện tích bằng 3 m2 là: 3a (m).

• Gọi t là thời gian để người thợ đó làm được x sản phẩm.

Vì thời gian làm việc và số sản phẩm làm được là hai đại lượng tỉ lệ thuận nên ta có:

tx = 1y, suy ra t = xy (giờ)

Vậy biểu thức biểu thị thời gian để người thợ đó làm được x sản phẩm là: xy (giờ).

• Diện tích của mảnh ruộng là: a + b (ha).

Mảnh ruộng cho thu hoạch được số tấn lúa là: m + n (tấn lúa).

Biểu thức biểu thị năng suất trung bình của mảnh ruộng gồm hai thửa đó là: m+na+b (tấn/ha).

b) Các biểu thức trên đều là biểu thức có dạng AB, trong đó A, B là những đa thức và B khác đa thức không.

Do đó các biểu thức này không phải là đa thức.

Khám phá 2: Cho biểu thức P=x212x+1

a) Tính giá trị của biểu thức tại x = 0.

b) Tại -12 , giá trị của biểu thức có xác định không? Tại sao?

Lời giải:


Thực hành 1: Tìm giá trị của phân thức:

a) x22x+1x+2 tại x = –3, x = 1;

b) xy3y2x+y tại x = 3, y = –1.

Lời giải:

a) Tại x = -3, ta có: (3)22×(3)+13+2=16

Tại x =1, ta có: 122×1+11+2=0

b) Tại x = 3, y = -1ta có: 3×(1)3×(1)23+(1)=3


Thực hành 2: Viết điều kiện xác định của mỗi phân thức:

a) 1a+4 ;

b) xy2x2y .

Lời giải:

a) Điều kiện xác định của phân thức 1a+4 là a + 4 ≠ 0 hay a ≠ ‒4.

b) Điều kiện xác định của phân thức xy2x2y là x – 2y ≠ 0 (nghĩa là tại các giá trị của x và y thỏa mãn x – 2y ≠ 0).

Vận dụng 1: Giá thành trung bình của một chiếc áo sơ mi được một xí nghiệp sản xuất cho bởi biểu thức Cx=0,0002x2+120x+1000x , trong đó x là số áo được sản xuất và C tính bằng nghìn đồng. Tính C khi x = 100, x = 1 000

Lời giải:

Tại x = 100, C=0.0002×1002+12×100+1000100=130.02 (nghìn đồng)

Tại x = 1000, C=0.0002×10002+12×1000+10001000=121.2 (nghìn đồng)


2. Hai phân thức bằng nhau


Khám phá 3: Xét hai phân thức M=xy và N=x2xxyy

a) Tính giá trị của các phân thức trên khi x = 3, y = 2 và khi x = ‒1, y = 5.

Nêu nhận xét về giá trị của M và N khi cho x và y nhận những giá trị nào đó (y ≠ 0 và xy – y ≠ 0).

b) Nhân tử thức của phân thức này với mẫu thức của phân thức kia, rồi so sánh hai đa thức nhận được.

Lời giải:


Thực hành 3: Mỗi cặp phân thức sau đây có bằng nhau không? Tại sao?

a) xy2xy+y và xyx+1;

b) xyxy và xyyx

Lời giải:

a) Ta có: (xy2)(x+1)=x2y2+xy2=xy(xy+y)

Vậy (xy2)(x+1)=xy(xy+y)

Do đó xy2xy+y=xyx+1

b) Ta có: (xyy)y=xy2y2

x(xyx)=x2yx2

Do xy2y2x2yx2 hay (xyy)yx(xyx)

Vậy xyyxxyxy


3. Tính chất cơ bản của phân thức

Khám phá 4: Xét các phân thức P=x2yxy2Q=xyR=x2+xyxy+y2

a) Các phân thức trên có bằng nhau không? Tại sao?

b) Có thể biến đổi như thế nào để chuyển Q thành P và R thành Q?

Lời giải:

a) • Xét hai phân thức P=x2yxy2 và Q=xy ta có:

x2y.y = x2y2;

xy2.x = x2y2.

Do đó x2y.y = xy2.x

Vậy x2yxy2 = xy hay P = Q            (1)

• Xét hai phân thức Q=xy và R=x2+xyxy+y2 ta có:

x.(xy + y2) = x2y + xy2;

y.(x2 + xy) = x2y + xy2.

Do đó x.(xy + y2) = y.(x2 + xy)

Vậy xy = x2+xyxy+y2, hay Q = R      (2)

Từ (1) và (2) ta có P = Q = R.

Vậy các phân thức P, Q và Q bằng nhau.

b) • Ta nhân cả tử và mẫu của phân thức Q=xy với cùng đơn thức xy khác đa thức không thì được: .

• Ta có:Q=xy=x.xyy.xy=x2yxy2=P

Ta chia cả tử và mẫu của phân thức R cho cùng nhân tử chung là (x + y) thì được:

R=x2+xyxy+y2=xx+yyx+y=xx+y:x+yyx+y:x+y=xy.

Thực hành 4: Chứng tỏ hai phân thức a2b2a2b+ab2 và abab bằng nhau theo hai cách khác nhau

Lời giải:

Cách 1: Ta có (a2b+ab2)(ab)=a3b+a2b2a2b2ab3=a3bab3=ab(a2b2)

Do đó (a2b2)ab=(a2+ab2)(ab)

Vậy a2b2a2b+ab2=abab

Cách 2: a2b2a2b+ab2=(a+b)(ab)(ab(a+b)=abab

Vậy a2b2a2b+ab2=abab


Thực hành 5: Rút gọn các phân thức sau:

a) 3x2+6xy6x2;

b) 2x2x3x24;

c) x+1x3+1.

Lời giải:


Bài tập

Bài tập 1: Trong các biểu thức sau, biểu thức nào là phân thức?

3x+12x1;             2x2 – 5x + 3;                    3x+12x1.

Lời giải:

Trong các biểu thức trên, 3x+12x1 và 2x2 – 5x + 3 là phân thức.

Biểu thức 3x+12x1 không phải là phân thức, vì có chứa biểu thức x.

Bài tập 2: Viết điều kiện xác định của các phân thức sau:

a) 4x1x6;

b) x10x+3y;

c) 3x2 – x + 7.

Lời giải:

a) Phân thức xác định khi x60 hay x6

b) Phân thức xác định khi x+3y0 (nghĩa là tại các giá trị của x và y thỏa mãn x + 3y ≠ 0).

c) Phân thức xác định với mọi x ∈ ℝ.


Bài tập 3: Tìm giá trị của phân thức:

a) A=3x2+3xx2+2x+1 tại x = ‒ 4;

b) B=abb2a2b2 tại a = 4, b = ‒2.

Lời giải:


Bài tập 4: Mỗi cặp phân thức sau có bằng nhau không? Tại sao?

a) 3aca3b và 6c2a2b;

b) 3ab3b26b2 và ab2b.

Lời giải:

a) Xét hai phân thức 3aca3b và 6c2a2b ta có:

3ac.2a2b = 6a3bc;

a3b.6c = 6a3bc.

Do đó 3ac.2a2b = a3b.6c

Vậy 3aca3b = 6c2a2b.

b) Ta có: 3ab3b26b2=3bab3b.2b=ab2b.

Vậy 3ab3b26b2=ab2b.

Bài tập 5: Tìm đa thức thích hợp thay vào Bài 5 trang 30 Toán 8 Tập 1 trong các đẳng thức sau:

Bài 5 trang 30 Toán 8 Tập 1 Chân trời sáng tạo | Giải Toán 8

Lời giải:

a) 2x+1x1=(2x+1)(x+1)(x1)(x+1)=2x2+3x+1x21

Đa thức cần tìm là: 2x2+3x+1

b) x2+2xx3+8=x(x+2)(x+2)(x22x+4=xx22x+4

Đa thức cần tìm là x


Bài tập 6: Rút gọn các phân thức sau:

a) 3x2y2xy5;

b) 3x23xx1;

c) ab2a2b2a2+a;

d) 12x4118x21.

Lời giải: