1. Đường thẳng vuông góc với mặt phẳng
Hoạt động 1: Đối với cánh cửa như trong Hình 7.10, khi đóng – mở cánh cửa, ta coi mép dưới BC của cánh cửa luôn sát sàn nhà (khe hở không đáng kể).
a) Từ quan sát trên, hãy giải thích vì sao đường thẳng AB vuông góc với mọi đường thẳng đi qua B trên sàn nhà.
b) Giải thích vì sao đường thẳng AB vuông góc với mọi đường thẳng trên sàn nhà.
Lời giải:
a) Vì mép dưới BC của cánh cửa luôn sát sàn nhà nên khi cánh cửa đóng, điểm A trên cánh cửa sẽ nằm trên một đường thẳng vuông góc với đường sát sàn nhà. Khi mở cánh cửa, điểm A sẽ di chuyển theo đường thẳng song song với đường sát sàn nhà và vẫn giữ nguyên góc vuông với các đường thẳng đi qua B trên sàn nhà. Do đó, đường thẳng AB luôn vuông góc với mọi đường thẳng đi qua B trên sàn nhà.
b) Theo tính chất của góc phẳng, khi hai đường thẳng AB và BC vuông góc với một đường thẳng CD chung, thì AB cũng vuông góc với BC. Vì vậy, khi đường thẳng AB vuông góc với đường thẳng đi qua điểm B trên sàn nhà, thì đường thẳng AB cũng vuông góc với mọi đường thẳng khác trên sàn nhà.
Câu hỏi: Nếu đường thẳng ∆ và mặt phẳng (P) vuông góc với nhau thì chúng có cắt nhau hay không?
Lời giải:
Nếu đường thẳng ∆ và mặt phẳng (P) vuông góc với nhau thì chúng có cắt nhau.
Vì nếu trái lại thì ∆ song song hoặc nằm trên (P). Khi đó, có đường thẳng a thuộc (P) và song song với ∆. Do đó (∆, a) = 0°, điều này mâu thuẫn với giả thiết ∆ vuông góc với (P).
Hoạt động 2: Gấp tấm bìa cứng hình chữ nhật sao cho nếp gấp chia tấm bìa thành hai hình chữ nhật, sau đó đặt nó lên mặt bàn như Hình 7.11.
a) Bằng cách trên, ta tạo đường thẳng AB vuông góc với hai đường thẳng nào thuộc mặt bàn?
b) Trên mặt bàn, qua điểm A kẻ một đường thẳng a tùy ý. Dùng ê ke, hãy kiểm tra trên mô hình xem AB có vuông góc với a hay không.
Lời giải:
a) Sau khi gấp tấm bìa cứng hình chữ nhật, ta sẽ có hai hình chữ nhật nằm chồng lên nhau, với đường chéo của chúng chính là đường thẳng AB. Do đó, đường thẳng AB sẽ vuông góc với đường chéo của hai hình chữ nhật đó.
b) Để kiểm tra xem đường thẳng AB có vuông góc với đường thẳng a hay không, ta có thể sử dụng một ê-ke. Đặt một đầu ê-ke lên điểm A và đưa đầu kia đi dọc theo đường thẳng a. Nếu đầu ê-ke không thay đổi hướng khi di chuyển qua đường thẳng AB, tức là đường thẳng AB vuông góc với đường thẳng a. Nếu đầu ê-ke thay đổi hướng khi di chuyển qua đường thẳng AB, tức là hai đường không vuông góc nhau.
Câu hỏi: Nếu một đường thẳng vuông góc với hai cạnh của một tam giác thì đường thẳng đó có vuông góc với các cạnh còn lại hay không?
Lời giải:
- Nếu một đường thẳng vuông góc với hai cạnh của một tam giác thì đường thẳng đó có vuông góc với các cạnh còn lại.
Luyện tập 1: Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O, SA = SC và SB = SD (H.7.14). Chứng minh rằng .
Lời giải:
+) Xét tam giác SAC có SA = SC ⇒ SAC là tam giác cân mà SO là trung tuyến
⇒ SO ⊥ AC.
Xét tam giác SBD có SB = SD ⇒ SBD là tam giác cân mà SO là trung tuyến
⇒ SO ⊥ BD.
+) Ta có SO ⊥ AC; SO ⊥ BD; AC ∩ BD tại O
⇒ SO ⊥ (ABCD).
Vận dụng: Khi làm cột treo quần áo, ta có thể tạo hai thanh đế thẳng đặt dưới sàn nhà và dựng cột treo vuông góc với hai thanh đế đó (H.7.15). Hãy giải thích vì sao bằng cách đó ta có được cột treo vuông góc với sàn nhà.
Lời giải:
- Điều này được giải thích bởi tính chất của đường thẳng và góc vuông. Một đường thẳng là đường đi qua hai điểm bất kỳ trên không gian và tạo thành một góc 180 độ. Trong khi đó, một góc vuông là một góc có độ lớn là 90 độ. Vì vậy, nếu ta đặt cột treo lên sao cho nó vuông góc với đường thẳng trên sàn nhà, thì chắc chắn cột treo sẽ đứng vuông góc với sàn nhà.
- Bằng cách này, ta có thể đảm bảo rằng cột treo sẽ được đặt đúng vị trí và đứng thẳng đứng góc với sàn nhà, giúp cho quá trình sử dụng cột treo quần áo được dễ dàng hơn và tiện lợi hơn.
2. Tính chất
Hoạt động 3: Cho điểm O và đường thẳng ∆ không đi qua O. Gọi d là đường thẳng đi qua O và song song với ∆. Xét hai mặt phẳng phân biệt tuỳ ý (P) và (Q) cùng chứa d. Trong các mặt phẳng (P), (Q) tương ứng kẻ các đường thẳng a, b cùng đi qua O và vuông góc với d (H.7.16). Giải thích vì sao mp(a, b) đi qua O và vuông góc với ∆.
Lời giải:
Ta có (P) = mp(d, a) và (Q) = mp(d, b).
Do (P) và (Q) là hai mặt phẳng phân biệt nên a và b là hai đường thẳng phân biệt.
Do hay (D, a) = (d, a) = 90°.
Do hay (D, b) = (d, b) = 90°.
Vậy D vuông góc với a và b và a, b đi qua O nên D ⊥ mp(a, b).
Hoạt động 4: Cho mặt phẳng (P) và điểm O. Trong mặt phẳng (P), lấy hai đường thẳng cắt nhau a, b tuỳ ý. Gọi (α), (β) là các mặt phẳng qua O và tương ứng vuông góc với a, b (H.7.19).
a) Giải thích vì sao hai mặt phẳng (α), (β) cắt nhau theo một đường thẳng ∆ đi qua O.
b) Nêu nhận xét về mối quan hệ giữa ∆ và (P).
Lời giải:
Luyện tập 2: Cho ba điểm phân biệt A, B, C sao cho các đường thẳng AB và AC cùng vuông góc với một mặt phẳng (P). Chứng minh rằng ba điểm A, B, C thẳng hàng.
Lời giải:
AB và AC đều vuông góc với mặt phẳng (P), ta có thể kết luận rằng AB và AC đều nằm trên một đường thẳng vuông góc với (P).
Gọi D là giao điểm của đường thẳng BC với mặt phẳng (P). Ta có thể chứng minh rằng AD cũng vuông góc với (P) bằng cách sử dụng tính chất của giao điểm của hai đường thẳng.
Vì AB, AC và AD đều đi qua một điểm A, nên chúng phải nằm trên cùng một đường thẳng. Do đó, A, B và C thẳng hàng.
Vậy ta đã chứng minh được rằng nếu ba điểm A, B, C sao cho AB và AC cùng vuông góc với một mặt phẳng (P) thì ba điểm đó phải thẳng hàng.
3. Liên hệ giữa quan hệ song song và quan hệ vuông góc của đường thẳng và mặt phẳng
Hoạt động 5: Cho đường thẳng a vuông góc với mặt phẳng (P) và song song với đường thẳng b. Lấy một đường thẳng m bất kì thuộc mặt phẳng (P) (H.7.20). Tính (b, m) và từ đó rút ra mối quan hệ giữa b và (P).
Lời giải:
Vì a ⊥ (P) mà m ⊥ (P) nên a ⊥ m hay (a, m) = 90°.
Mà b // a nên (b, m) = (a, m) = 90°.
Do b vuông góc với mọi đường thẳng m bất kì trong (P) nên b vuông góc với (P).
Hoạt động 6: Cho hai đường thẳng phân biệt a và b cùng vuông góc với mặt phẳng (P). Xét O là một điểm thuộc a nhưng không thuộc b. Gọi c là đường thẳng qua O và song song với b (H.7.21).
a) Hỏi c có vuông góc với với (P) hay không ? Nêu nhận xét về vị trí tương đối giữa a và c.
b) Nêu nhận xét về vị trí tương đối giữa hai đường thẳng a và b.
Lời giải:
a) Để xác định liệu đường thẳng c có vuông góc với (P) hay không, ta cần xem xét vị trí tương đối giữa c và mặt phẳng (P). Ta thấy rằng c không nằm trên mặt phẳng (P) nên không thể nói rằng c vuông góc với (P). Tuy nhiên, vị trí tương đối giữa a và c là song song vì c và b là hai đường thẳng song song.
b) Hai đường thẳng a và b là hai đường thẳng vuông góc với cùng một mặt phẳng (P), vì vậy chúng là hai đường thẳng chéo nhau.
Hoạt động 7: Cho hai mặt phẳng (P) và (Q) song song với nhau và đường thẳng ∆ vuông góc với (P). Gọi b là một đường thẳng bất kì thuộc (Q). Lấy một đường thẳng a thuộc (P) sao cho a song song với b (H.7.23). So sánh (∆, b) và (∆, a). Từ đó rút ra mối quan hệ giữa ∆ và (Q).
Lời giải:
Hoạt động 8: Cho hai mặt phẳng (P) và (Q) cùng vuông góc với đường thẳng ∆. Xét O là một điểm thuộc mặt phẳng (P) nhưng không thuộc mặt phẳng (Q). Gọi (R) là mặt phẳng đi qua O và song song với (Q). (H.7.24).
a) Hỏi (R) có vuông góc với ∆ hay không ? Nêu nhận xét về vị trí tương đối giữa (P) và (R).
b) Nêu vị trí tương đối giữa (P) và (Q).
Lời giải:
a) Do ∆ ⊥ (Q) mà (Q) // (R) nên ∆ ⊥ (R).
Do ∆ ⊥ (R) và ∆ ⊥ (P) mà (P) và (R) cùng đi qua O nên (P) và (R) trùng nhau.
b) Vì (P) và (R) trùng nhau mà (Q) // (R) nên (P) // (Q).
Luyện tập 3: Một chiếc bàn có các chân cùng vuông góc với mặt phẳng chứa mặt bàn và mặt phẳng chứa mặt sàn. Hỏi hai mặt phẳng đó có song song với nhau hay không ? Vì sao ?
Lời giải:
- Hai mặt phẳng đó không nhất thiết phải song song với nhau.
- Vì nếu mặt sàn không phẳng, tức là có sự chênh lệch độ cao giữa các điểm trên sàn, thì chiếc bàn khi đặt lên sàn sẽ không còn nằm trong một mặt phẳng duy nhất, mà sẽ nghiêng theo hướng chênh lệch độ cao của sàn.
Hoạt động 9: Cho đường thẳng a song song với mặt phẳng (P) và đường thẳng ∆ vuông góc với mặt phẳng (P). Tính (∆, a).
Lời giải:
Hoạt động 10: Cho đường thẳng a và mặt phẳng (P) cùng vuông góc với một đường thẳng ∆.
a) Qua một điểm O thuộc (P), kẻ đường thẳng a' song song với a. Nêu vị trí tương đối giữa a' và (P).
b) Nêu vị trí tương đối giữa a và (P).
Lời giải:
a) Do a // a' và ∆ ⊥ a nên ∆ ⊥ a'.
Lại có ∆ ⊥ (P) suy ra, a' // (P) hoặc a' thuộc (P).
Vì a' đi qua O thuộc (P) nên a' thuộc (P).
b) Vì a // a' , a' thuộc (P) nên a thuộc (P) hoặc a song song với (P).
Luyện tập 4: Cho hình chóp S.ABCD có đáy ABCD là một hình vuông, SA ⊥ (ABCD). Kẻ AH vuông góc với SC (H thuộc SC), BM vuông góc với SC (M thuộc SC). Chứng minh rằng SC ⊥ (MBD) và AH // (MBD).
Lời giải:
Đặt
Do đó, Do đó,
Ta có
Kẻ
Vì
Bài tập
Bài 7.5: Cho hình chóp S.ABC có đáy là tam giác cân tại A và . Gọi M là trung điểm của BC. Chứng minh rằng:
a) ;
b) Tam giác SBC cân tại S.
Lời giải:
Bài 7.6: Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật và . Chứng minh rằng các mặt bên của hình chóp S.ABCD là các tam giác vuông.
Lời giải:
Vì SA ⊥ (ABCD) nên SA ⊥ AD, SA ⊥ AB, SA ⊥ BC, SA ⊥ CD.
Do ABCD là hình chữ nhật nên AB ⊥ BC, AD ⊥ DC.
Vì SA ⊥ AB nên tam giác SAB vuông tại A.
Vì SA ⊥ AD nên tam giác SAD vuông tại A.
Vì SA ⊥ BC và AB ⊥ BC nên BC ⊥ (SAB), suy ra BC ⊥ SB hay tam giác SBC vuông tại B.
Vì SA ⊥ CD và AD ⊥ DC nên CD ⊥ (SAD), suy ra CD ⊥ SD hay tam giác SCD vuông tại D.
Bài 7.7: Cho hình chóp S.ABCD có đáy là hình chữ nhật và . Gọi M, N tương ứng là hình chiếu của A trên SB, SD. Chứng minh rằng: .
Lời giải:
Gọi
Vì
Ta có
Cuối cùng, ta chứng minh được
Bài 7.8: Bạn Vinh thả quả dọi chìm vào thùng nước. Hỏi khi dây dọi căng và mặt nước yên lặng thì đường thẳng chứa dây dọi có vuông góc với mặt phẳng chứa mặt nước trong thùng hay không?
Lời giải:
- Khi dây dọi căng và mặt nước yên lặng, đường thẳng chứa dây dọi vuông góc với mặt phẳng chứa mặt nước trong thùng.
Bài 7.9: Một cột bóng rổ được dựng trên một sân phẳng. Bạn Hùng đo khoảng cách từ một điểm trên sân, cách chân cột 1 m đến một điểm trên cột, cách chân cột 1 m được kết quả là 1,5 m (H.7.27). Nếu phép đo của Hùng là chính xác thì cột có vuông góc với sân hay không? Có thể kết luận rằng cột không có phương thẳng đứng hay không?
Lời giải:
Có 12 + 12 ≠ 1,52 . Do đó theo định lí Pythagore thì cột không vuông góc với mặt sân.
Do đó cột không có phương thẳng đứng.