Giải SGK Toán 11 Kết nối tri thức Bài 26: Khoảng cách

1. Khoảng cách từ một điểm đến một đường thẳng , đến một mặt phẳng

Hoạt động 1:

a) Cho điểm M và đường thẳng a. Gọi H là hình chiếu của M trên a. Với mỗi điểm K thuộc a, giải thích vì sao MK  MH (H.7.74).

b) Cho điểm M và mặt phẳng (P). Gọi H là hình chiếu của M lên (P). Với mỗi điểm K thuộc (P), giải thích vì sao MK  MH (H7.75).

HĐ1 trang 54 Toán 11 Tập 2 | Kết nối tri thức Giải Toán 11

Lời giải:

a) Vì H là hình chiếu của M trên đường thẳng a, nên MH là khoảng cách từ M đến a và MH là đoạn thẳng ngắn nhất từ M đến a, suy ra MK>MH.

b) Vì H là hình chiếu của M trên mặt phẳng (P), nên MH là khoảng cách từ M đến (P) và MH là đoạn thẳng ngắn nhất từ M đến (P)

Ta có MH vuông góc với (P) và MK là phân giác góc giữa MH và MK. Do đó, góc giữa MK và (P) lớn hơn hoặc bằng góc giữa MH và (P). Điều này có nghĩa là độ dài của MK lớn hơn hoặc bằng độ dài của MH, và do đó ta có MKMH.


Luyện tập 1: Cho hình lăng trụ đứng ABC.A'B'C' có ABC là tam giác vuông cân tại A, AB = a, AA' = h (H.7.77).

a) Tính khoảng cách từ A đến mặt phẳng (BCC'B').

b) Tam giác ABC' là tam giác gì? Tính khoảng cách từ A đến BC'.

Luyện tập 1 trang 55 Toán 11 Tập 2 | Kết nối tri thức Giải Toán 11

Lời giải:



2. Khoảng cách giữa các đường thẳng và mặt phẳng song song, giữa hai mặt phẳng song song

Hoạt động 2: Cho đường thẳng a song song với mặt phẳng (P). Lấy hai điểm M; N bất kỳ thuộc a và gọi A; B tương ứng là các hình chiếu của chúng trên (P) (H.7.78). Giải thích vì sao ABNM là một hình chữ nhật và M, N có cùng khoảng cách đến (P).

HĐ2 trang 55 Toán 11 Tập 2 | Kết nối tri thức Giải Toán 11

Lời giải:

Vì A, B lần lượt là các hình chiếu của M, N trên (P) nên AM  (P), BN  (P).

Do đó AM // BN hay A, B, M, N cùng thuộc một mặt phẳng.

Vì MN // (P) và (ABNM)  (P) = AB nên MN // AB.

Vì AM // BN và MN // AB nên ABNM là hình bình hành.

Mặt khác AM  (P) nên AM  AB. Do đó ABNM là hình chữ nhật.

Vì ABNM là hình chữ nhật nên AM = BN nên M, N có cùng khoảng cách đến (P).

Hoạt động 3:

a) Cho hai đường thẳng m và n song song với nhau. Khi một điểm M thay đổi trên m thì khoảng cách từ nó đến đường thẳng n có thay đổi hay không?

b) Cho hai mặt phẳng song song (P) và (Q) và một điểm M thay đổi trên (P) (H.7.79). Hỏi khoảng cách từ M đến (Q) thay đổi thế nào khi M thay đổi.

HĐ3 trang 56 Toán 11 Tập 2 | Kết nối tri thức Giải Toán 11

Lời giải:

a) Khi một điểm M thay đổi trên đường thẳng m, khoảng cách từ M đến đường thẳng n không thay đổi.

b) Khi một điểm M thay đổi trên mặt phẳng P, khoảng cách từ M đến mặt phẳng Q không thay đổi. 


Câu hỏi: Nếu đường thẳng a thuộc mặt phẳng (P) và mặt phẳng (Q) song song với (P) thì giữa d(a, (Q)) và d((P), (Q)) có mối quan hệ gì?

Lời giải:

Lấy M bất kì thuộc a nằm trong mặt phẳng (P), suy ra M thuộc (P).

Vì a // (Q), khi đó d (a, (Q)) = d(M, (Q)).

Vì (P) // (Q) nên d((P), (Q)) = d(M, (Q)).

Do đó d(a, (Q)) = d((P), (Q)).

Luyện tập 2: Cho hình chóp S.ABC có SA  (ABC), SA = h. Gọi M, N, P tương ứng là trung điểm của SA, SB, SC.

a) Tính d((MNP), (ABC)) và d(NP, (ABC)).

b) Giả sử tam giác ABC vuông tại B và AB = a. Tính d(A, (SBC)).

Luyện tập 2 trang 56 Toán 11 Tập 2 | Kết nối tri thức Giải Toán 11

Lời giải:


b) Vì ABC là tam giác vuông tại B nên BC  AB.

Vì SA  (ABC) nên SA  BC mà BC  AB nên BC  (SAB), suy ra (SBC)  (SAB).

Kẻ AH  SB tại H.

Vì Luyện tập 2 trang 56 Toán 11 Tập 2 | Kết nối tri thức Giải Toán 11

Khi đó d(A, (SBC)) = AH.

Vì SA  (ABC) nên SA  AB.

Xét tam giác SAB vuông tại A, AH là đường cao, có

.

Vậy d(A, (SBC)) =  .

Vận dụng 1: Ở một con dốc lên cầu, người ta đặt một khung khống chế chiều cao, hai cột của khung có phương thẳng đứng và có chiều dài bằng 2,28 m. Đường thẳng nối hai chân cột vuông góc với hai đường mép dốc. Thanh ngang được đặt trên đỉnh hai cột. Biết dốc nghiêng 15° so phương nằm ngang. Tính khoảng cách giữa thanh ngang của khung và mặt đường (theo đơn vị mét và làm tròn kết quả đến chữ số thập phân thứ hai). Hỏi cầu này có cho phép xe cao 2,21 m đi qua hay không?

Vận dụng 1 trang 57 Toán 11 Tập 2 | Kết nối tri thức Giải Toán 11

Lời giải:

Gọi ABCD là hình thang cân với AB=CD=2,28 và BC=AD=x là độ dài đường nối hai chân cột. Đường thẳng DE vuông góc với AB, trong đó D nằm trên BC và E nằm trên AD. Khi đó, ta có DE=xsin15

Gọi M là trung điểm của ABN là trung điểm của CD. Khoang cách từ thanh ngang EF đến mặt đất chính là độ dái đoạn thắng MN.

Tính được MN=AMAN=ABcos15CDcos15 và DE=xsin15, từ đó tính được khoảng cách từ thanh ngang EF=DE+MN=xsin15+0,94(m)  

Để xe có chiều cao không quá 2,21m đi qua được ta có 

x2,210,94sin156,37m


3. Khoảng cách giữa hai đường thẳng chéo nhau

Hoạt động 4: Cho hai đường thẳng chéo nhau a và b. Gọi (Q) là mặt phẳng chứa đường thẳng b và song song với a. Hình chiếu a' của a trên (Q) cắt b tại N. Gọi M là hình chiếu của N trên a (H.7.83).

HĐ4 trang 57 Toán 11 Tập 2 | Kết nối tri thức Giải Toán 11

a) Mặt phẳng chứa a và a' có vuông góc với (Q) hay không?

b) Đường thẳng MN có vuông góc với cả hai đường thẳng a và b hay không?

c) Nêu mối quan hệ của khoảng cách giữa a, (Q) và độ dài đoạn thẳng MN.

Lời giải:


Khám phá: Cho đường thẳng a vuông góc với mặt phẳng (P) và cắt (P) tại O. Cho đường thẳng b thuộc mặt phẳng (P). Hãy tìm mối quan hệ giữa khoảng cách giữa a, b và khoảng cách từ Ođến b (H.7.88).

Khám phá trang 58 Toán 11 Tập 2 | Kết nối tri thức Giải Toán 11

Lời giải:

Ta có d(O, b) = OH.

Vì a  (P) nên a  OH mà OH  b nên OH là đoạn vuông góc chung của a và b, do đó d(a, b) = OH.

Vậy d(a, b) = d(O, b).

Luyện tập 3: Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, SA  (ABCD), SA = a.

a) Tính khoảng cách từ A đến SC.

b) Chứng minh rằng BD  (SAC).

c) Xác định đường vuông góc chung và tính khoảng cách giữa BD và SC.

Luyện tập 3 trang 58 Toán 11 Tập 2 | Kết nối tri thức Giải Toán 11

Lời giải:


Thảo luận: Khoảng cách giữa hai hình được nêu trong bài học (điểm, đường thẳng, mặt phẳng) là khoảng cách nhỏ nhất giữa một điểm thuộc hình này và một điểm thuộc hình kia. Hãy thảo luận để làm rõ nhận xét này.

Lời giải:

- Khoảng cách từ một điểm M đến một đường thẳng a là khoảng cách giữa M và hình chiếu H của M trên a.

- Khoảng cách từ điểm M đến mặt phẳng (P) là khoảng cách giữa M và hình chiếu H của M trên mặt phẳng (P).

- Khoảng cách giữa đường thẳng a và mặt phẳng (P) song song với a là khoảng cách từ một điểm M bất kì trên a đến mặt phẳng (P).

- Khoảng cách giữa hai mặt phẳng song (P) và (Q) là khoảng cách từ một điểm bất kì thuộc mặt phẳng này đến mặt phẳng kia.

Mà đường vuông góc là đường ngắn nhất nên khoảng cách giữa hai hình được nêu trong bài học (điểm, đường thẳng, mặt phẳng) là khoảng cách nhỏ nhất giữa một điểm thuộc hình này và một điểm thuộc hình kia.

Bài tập

Bài 7.22: Cho hình chóp S.ABCD có đáy là một hình vuông cạnh a, mặt bên SAD là một tam giác đều và (SAD)  (ABCD).

a) Tính chiều cao của hình chóp.

b) Tính khoảng cách giữa BC và (SAD).

c) Xác định đường vuông góc chung và tính khoảng cách giữa AB và SD.

Lời giải:

Gọi H là trung điểm AB. Khi đó, SH là đường cao của tam giác đều SAD. Vì ABCD là hình vuông nên AH song song với mặt phẳng (SAD). Suy ra SH vuông góc với mặt phẳng đáy ABCD. Ta có:

SH=32a

Gọi O là trung diểm của SD.Khi đó OB//(SAD) vàOB=22a. Ta có khoảng cách từ C dến (SAD). Để làm được điều này, ta cần tìm giao tuyến của hai mặt phẳng (SAD) và (BCD). Gọi E là iao điểm của BD và SH. Khi đó SE song song với BC và BE=12a

CE=BEBC=12aa=(121)a

Ta lại có OE vuông góc với (SAD) và OE=12SH=34a Khoảng cách từ C đến (SAD) là khoảng cách từ C đến OE hay

 

dBC,(SAD)=CEsinCEOˆ=2422a=(2+2)a

c) Đường vuông góc chung của hai mặt phẳng (SAB) và (SCD) là đường thẳng δ đi qua trung điẻm của AC và BD. Suy ra δ và AB 

Gọi M là trung điểm cua AC và N là trung điểm ủa BD. Khi đó, SM  vuông góc với (SAB) và SN vuông góc với (SCD) . Suy ra δ vuông góc với cả hai mặt phẳng 

MN=12AC=22a

Khoảng cách giữa δ và AB bằng khoảng cách từ điểm S đến đường thẳng AB theo công thức khoảng cách từ một điểm đến một đường:

dS,AC=|SA.AB.SB|2SSAB=63a


Bài 7.23: Cho hình hộp chữ nhật ABCD.A'B'C'D'có AA' = a, AB = b, BC = c.

a) Tính khoảng cách giữa CC' và (BB'D'D).

b) Xác định đường vuông góc chung và tính khoảng cách giữa AC và B'D'.

Lời giải:

Bài 7.23 trang 59 Toán 11 Tập 2 | Kết nối tri thức Giải Toán 11

a) Kẻ CH  BD tại H.

Vì BB'  (ABCD) nên BB'  CH mà CH  BD nên CH  (BB'D'D).

Vì BB'C'C là hình chữ nhật nên BB' // CC' nên CC' // (BB'D'D).

Khi đó d(CC', (BB'D'D)) = d(C, (BB'D'D)) = CH.

Vì ABCD là hình chữ nhật nên AB = CD = b; AD = BC = c.

Xét tam giác BCD vuông tại C, CH là đường cao nên

.

Vậy d(CC', (BB'D'D))  .

b) Gọi O là giao điểm của AC và BD, O' là giao điểm của A'C' và B'D'.

Do ABCD là hình chữ nhật nên O là trung điểm của AC, BD và A'B'C'D' là hình chữ nhật nên O' là trung điểm của A'C' và B'D'.

Có AA' // CC' và AA' = CC' (do chúng cùng song song và bằng BB’) nên AA'C'C là hình bình hành mà AA'  (ABCD) nên AA'  AC. Do đó AA'C'C là hình chữ nhật.

Do AA'C'C là hình chữ nhật và O là trung điểm của AC, O' là trung điểm của A'C' nên OO'  AC và OO' = AA' = a.

Có BB' // DD' và BB' = DD' (do chúng cùng song song và bằng AA') nên BB'D'D là hình bình hành mà BB'  (ABCD) nên BB'  BD. Do đó BB'D'D là hình chữ nhật.

Vì BB'D'D là hình chữ nhật và O là trung điểm của BD, O' là trung điểm của B'D' nên OO'  B'D'.

Vì OO'  AC và OO'  B'D' nên OO' là đường vuông góc chung của AC và B'D'.

Khi đó d(AC, B'D') = OO' = a.

Bài 7.24: Cho tứ diện ABCD có các cạnh đều bằng a. Gọi M, N tương ứng là trung điểm của các cạnh AB, CD. Chứng minh rằng:

a) MN là đường vuông góc chung của AB và CD.

b) Các cặp cạnh đối diện trong tứ diện ABCD đều vuông góc với nhau.

Lời giải:


Bài 7.25: Cho hình lập phương ABCD.A'B'C'D'có cạnh a.

a) Chứng minh rằng hai mặt phẳng (D'AC)và (BC'A') song song với nhau và DB' vuông góc với hai mặt phẳng đó.

b) Xác định các giao điểm E, F của DB' với (D'AC), (BC'A'). Tính d((D'AC), (BC'A')).

Lời giải:

Bài 7.25 trang 59 Toán 11 Tập 2 | Kết nối tri thức Giải Toán 11

a) Vì AA' // CC' và AA' = CC' (do chúng cùng song song và bằng BB') nên AA'C'C là hình bình hành, suy ra AC // A'C' do đó A'C' // (D'AC).

Vì AB // C'D' và AB = C'D' (do chúng cùng song song và bằng CD) nên ABC'D' là hình bình hành suy ra BC' // AD', do đó BC' // (D'AC).

Vì A'C' // (D'AC) và BC' // (D'AC) nên (BC'A') // (D'AC).

Vì ABCD là hình vuông nên AC  BD.

Vì BB'  (ABCD) nên BB'  AC mà AC  BD nên AC  (BB'D), suy ra AC  DB'.

Vì AC // A'C' mà AC  DB' nên A'C'  DB'.

Do AD  (ABB'A') nên AD  A'B.

Vì ABB'A' là hình vuông nên AB'  A'B mà AD  A'B nên A'B  (ADB').

Suy ra A'B  DB'.

Có A'C'  DB' và A'B  DB' nên DB'  (BC'A').

Vì A'D' // BC và A'D' = BC (do chúng cùng song song và bằng AD) nên A'D'CB là hình bình hành, suy ra A'B // D'C mà A'B  DB' nên D'C  DB'.

Có AC  DB' và D'C  DB' nên DB'  (D'AC).

b) Gọi O và O' lần lượt là tâm của hai hình vuông ABCD và A'B'C'D'.

Trong mặt phẳng (BDD'B'), có DB'  D'O = E. Khi đó DB'  (D'AC) = E.

Trong mặt phẳng (BDD'B'), có DB'  BO' = F. Khi đó DB'  (BC'A') = F.

Vì (BC'A') // (D'AC) nên d((D'AC), (BC'A')) = d(E, (BC'A')) = EF (vì DB'  (BC'A')).

Vì DB'  (BC'A') nên DB'  BO' và DB'  (D'AC) nên DB'  D'O, suy ra BO' // D'O.

Xét tam giác DBF, có OE // BF nên theo định lí Ta lét, ta có:  .

Xét tam giác B'D'E có O'F // D'E nên theo định lí Ta lét, ta có: B'F = EF.

Do đó B'F = EF = DE EF = DB' .

Xét tam giác BCD vuông tại C, có .

Xét tam giác B'BD vuông tại B, có 

Vậy d((D'AC), (BC'A')) =  .

Bài 7.26: Giá đỡ ba chân ở Hình 7.90 đang được mở sao cho ba gốc chân cách đều nhau một khoảng cách bằng 110 cm. Tính chiều cao của giá đõ, biết các chân của giá đỡ dài 129 cm.

Bài 7.26 trang 59 Toán 11 Tập 2 | Kết nối tri thức Giải Toán 11

Lời giải:

Chiều dài các chân của giá đỡ: AB = BC = CD = 129 cm

Khoảng cách giữa các gốc chân: AE = BE = CE = 110 cm

Gọi I là trung điểm của đoạn thẳng AE, ta có: AI = IE = 55 cm.

Ta có thể tính toán chiều cao h của giá đỡ theo hai cách sau:

Xét tam giác AIF, ta có:

IF² + AI² = AF²

Vì IF = h và AF = AB = 129 cm, nên ta có:

h² + 55² = 129²

⇒ h² = 129² - 55²

⇒ h ≈ 119.5 cm

Vậy chiều cao của giá đỡ là khoảng 119.5 cm.


Bài 7.27: Một bể nước có đáy thuộc mặt phẳng nằm ngang. Trong trường hợp này, độ sâu của bể là khoảng cách giữa mặt nước và đáy bể. Giải thích vì sao để đo độ sâu của bể, ta có thể thả quả dọi chạm đáy bể và đo chiều dài của đoạn dây dọi nằm trong bể nước.

Lời giải:

Khi bể nước có đáy thuộc mặt phẳng nằm ngang, thì mặt nước nằm trong mặt phẳng song song với đáy. Vì vậy, để đo độ sâu của bể, ta có thể đo khoảng cách từ mặt nước đến đáy bể.

Khi thả quả dọi vào bể nước, nó sẽ chìm dưới mặt nước và chạm đến đáy bể. Khi kéo quả dọi lên, ta sẽ thấy một đoạn dây dọi nằm trong bể nước và một đoạn dây dọi ở ngoài bể nước. Đoạn dây dọi nằm trong bể nước có độ dài bằng khoảng cách từ mặt nước đến chỗ quả dọi chạm đáy bể. Do đó, để đo độ sâu của bể, ta chỉ cần đo độ dài của đoạn dây dọi nằm trong bể nước.

Công thức để tính độ sâu của bể nước sẽ là:

Độ sâu bể = chiều dài của đoạn dây dọi nằm trong bể nước